33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipocalin 2 (Lcn2) is a promising therapeutic target as well as a potential diagnostic biomarker for breast cancer. It has been previously shown to promote breast cancer progression by inducing the epithelial to mesenchymal transition in breast cancer cells as well as by enhancing angiogenesis. Lcn2 levels in urine and tissue samples of breast cancer patients has also been correlated with breast cancer status and poor patient prognosis. In this study, we have engineered a novel liposomal small interfering RNA (siRNA) delivery system to target triple negative breast cancer (TNBC) via a recently identified molecular target, intercellular adhesion molecule-1 (ICAM-1). This ICAM-1-targeted, Lcn2 siRNA- encapsulating liposome (ICAM-Lcn2-LP) binds human TNBC MDA-MB-231cells significantly stronger than non-neoplastic MCF-10A cells. Efficient Lcn2 knockdown by ICAM-Lcn2-LPs led to a significant reduction in the production of vascular endothelial growth factor (VEGF) from MDA-MB-231 cells, which, in turn, led to reduced angiogenesis both in vitro and in vivo. Angiogenesis (neovascularization) is a requirement for solid tumor growth and progression, and its inhibition is an important therapeutic strategy for human cancers. Our results indicate that a tumor-specific strategy such as the TNBC-targeted, anti-angiogenic therapeutic approach developed here, may be clinically useful in inhibiting TNBC progression.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular endothelial growth factor is a secreted angiogenic mitogen.

          Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strategies for silencing human disease using RNA interference.

            Since the first description of RNA interference (RNAi) in animals less than a decade ago, there has been rapid progress towards its use as a therapeutic modality against human diseases. Advances in our understanding of the mechanisms of RNAi and studies of RNAi in vivo indicate that RNAi-based therapies might soon provide a powerful new arsenal against pathogens and diseases for which treatment options are currently limited. Recent findings have highlighted both promise and challenges in using RNAi for therapeutic applications. Design and delivery strategies for RNAi effector molecules must be carefully considered to address safety concerns and to ensure effective, successful treatment of human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight.

              Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2016
                1 January 2016
                : 6
                : 1
                : 1-13
                Affiliations
                1. Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, United States
                2. Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
                3. Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
                Author notes
                ✉ Corresponding author: Email: dauguste@ 123456ccny.cuny.edu

                †These authors contributed equally to this work, and are co-first authors.

                ‡These authors contributed equally to this work, and are co-last authors.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov06p0001
                10.7150/thno.12167
                4679350
                26722369
                980a1a9d-6604-4608-a4ce-3f10883c5f4f
                © 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.
                History
                : 18 March 2015
                : 16 September 2015
                Categories
                Research Paper

                Molecular medicine
                icam-1,lipocalin-2,liposomal sirna,triple-negative breast cancer,angiogenesis
                Molecular medicine
                icam-1, lipocalin-2, liposomal sirna, triple-negative breast cancer, angiogenesis

                Comments

                Comment on this article