Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Co-infection can markedly alter the response to a pathogen, thereby changing its clinical presentation. For example, non-typhoidal Salmonella (NTS) serotypes are associated with gastroenteritis in immunocompetent individuals. In contrast, individuals with severe pediatric malaria can develop bacteremic infections with NTS, during which symptoms of gastroenteritis are commonly absent. Here, we report that in both a ligated ileal loop model and a mouse colitis model, malaria parasites caused a global suppression of gut inflammatory responses and blunted the neutrophil influx that is characteristic of NTS infection. Further, malaria parasite infection led to increased recovery of S. Typhimurium from the draining mesenteric lymph node of mice. In the mouse colitis model, blunted intestinal inflammation during NTS infection was independent of anemia, but instead required parasite-induced synthesis of IL-10. Blocking of IL-10 in co-infected mice reduced dissemination of S. Typhimurium to the mesenteric lymph node, suggesting that induction of IL-10 contributes to development of disseminated infection. Thus, IL-10 produced during the immune response to malaria in this model contributes to suppression of mucosal inflammatory responses to invasive NTS, which may contribute to differences in the clinical presentation of NTS infection in the setting of malaria.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Salmonella infections in immunocompromised adults.

          Clinical syndromes caused by Salmonella infection in humans are divided into typhoid fever, caused by Salmonella typhi and Salmonella paratyphi, and a range of clinical syndromes, including diarrhoeal disease, caused by a large number of non-typhoidal salmonella serovars (NTS). Typhoid is a human-restricted and highly adapted invasive disease, but shows little association with immunocompromise. In contrast, NTS have a broad vertebrate host range, epidemiology that often involves food animals, and have a dramatically more severe and invasive presentation in immunocompromised adults, in particular in the context of HIV. Immunocompromise among adults, including underlying severe or progressive disease, chronic granulomatous disease, defects or blockade of specific cytokines (particularly IL-12/IL-23/IL-17 and TNF), and HIV, is associated with suppurative foci and with primary bacteraemic disease, which may be recurrent. These patients have markedly increased mortality. Worldwide, invasive recurrent NTS bacteraemia associated with advanced HIV disease is a huge problem, and the epidemiology in this context may be more human-restricted than in other settings. This review will describe the presentation and pathogenesis of NTS in different categories of immunocompromised adults, contrasted to typhoid fever.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms.

            Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells.

              The malaria parasite Plasmodium falciparum is one of the most successful human pathogens. Specific virulence factors remain poorly defined, although the adhesion of infected erythrocytes to the venular endothelium has been associated with some of the syndromes of severe disease. Immune responses cannot prevent the development of symptomatic infections throughout life, and clinical immunity to the disease develops only slowly during childhood. An understanding of the obstacles to the development of protective immunity is crucial for developing rational approaches to prevent the disease. Here we show that intact malaria-infected erythrocytes adhere to dendritic cells, inhibit the maturation of dendritic cells and subsequently reduce their capacity to stimulate T cells. These data demonstrate both a novel mechanism by which malaria parasites induce immune dysregulation and a functional role beyond endothelial adhesion for the adhesive phenotypes expressed at the surface of infected erythrocytes.
                Bookmark

                Author and article information

                Journal
                101299742
                35518
                Mucosal Immunol
                Mucosal Immunol
                Mucosal immunology
                1933-0219
                1935-3456
                3 April 2014
                26 March 2014
                November 2014
                01 May 2015
                : 7
                : 6
                : 1302-1311
                Affiliations
                [1 ]School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616 USA
                [2 ]School of Veterinary Medicine, St. George's University, Grenada, West Indies
                [3 ]Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
                Author notes
                [# ]Corresponding author: rmtsolis@ 123456ucdavis.edu ; Phone: +1 530 754 8498; Fax +1 530 754 7240
                [*]

                These authors contributed equally

                Article
                NIHMS568806
                10.1038/mi.2014.18
                4177018
                24670425
                98069ad3-55f4-4399-baf7-699aca588f3c
                History
                Categories
                Article

                Immunology
                salmonella,intestinal inflammation,malaria,co-infections,tropical diseases
                Immunology
                salmonella, intestinal inflammation, malaria, co-infections, tropical diseases

                Comments

                Comment on this article