19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic diversity and phylogeography of the elusive, but epidemiologically important Echinococcus granulosus sensu stricto genotype G3

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cystic echinococcosis (CE) is a severe parasitic disease caused by the species complex Echinococcus granulosus sensu lato. Human infections are most commonly associated with E. granulosus sensu stricto (s.s.), comprising genotypes G1 and G3. The objective of the current study was to provide first insight into the genetic diversity and phylogeography of genotype G3. Despite the epidemiological importance of the genotype, it has remained poorly explored due to the ambiguity in the definition of the genotype. However, it was recently demonstrated that long sequences of mitochondrial DNA (mtDNA) provide a reliable method to discriminate G1 and G3 from each other. Therefore, we sequenced near-complete mtDNA of 39 G3 samples, covering most of the known distribution range and host spectra of the genotype. The phylogenetic network revealed high genetic variation within E. granulosus s.s. G3 and while G3 is significantly less prevalent worldwide than G1, the genetic diversity of both of the genotypes is equally high. We also present the results of the Bayesian phylogeographic analysis, which yielded several well-supported diffusion routes of genotype G3 originating from Turkey and Iran, suggesting the Middle East as the origin of the genotype.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing.

          The pattern of species and strain variation within the genus Echinococcus is complex and controversial. In an attempt to characterise objectively the various species and strains, the sequence of a region of the mitochondrial cytochrome c oxidase subunit I (CO1) gene was determined for 56 Echinococcus isolates. Eleven different genotypes were detected, including 7 within Echinococcus granulosus, and these were used to categorise the isolates. The 4 generally accepted Echinococcus species were clearly distinguishable using this approach. In addition, the consensus view of the strain pattern within E. granulosus, based on a variety of criteria of differentiation, was broadly upheld. Very little variation was detected within Echinococcus multilocularis. Remarkable intra-strain homogeneity was found at the DNA sequence level. This region of the rapidly evolving mitochondrial genome is useful as a marker of species and strain identity and as a preliminary indication of evolutionary divergence within the genus Echinococcus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact.

            The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the expansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of domesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human environmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today's anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high biodiversity since the Neolithic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes.

              Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.bio.ed.ac.uk, last accessed 9 May 2016). The integration of JavaScript D3 libraries (www.d3.org, last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest.
                Bookmark

                Author and article information

                Journal
                Parasitology
                Parasitology
                Cambridge University Press (CUP)
                0031-1820
                1469-8161
                October 2018
                April 17 2018
                October 2018
                : 145
                : 12
                : 1613-1622
                Article
                10.1017/S0031182018000549
                29661261
                97ce59bd-36a3-4c7c-b80f-10186b50cd23
                © 2018

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content212

                Cited by19

                Most referenced authors1,061