0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          mRNA vaccines — a new era in vaccinology

          mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection.

            The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Degradable Lipid Nanoparticles with Predictable In Vivo siRNA Delivery Activity

              One of the most significant challenges in the development of clinically-viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. To this end, we synthesized 1400 degradable lipidoids and evaluated their transfection ability and structure function activity. Here we show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations upon IV administration to mice (siRNA EC50 values as low as 0.01 mg/kg). Surprisingly, we identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Taylor & Francis
                2222-1751
                18 July 2024
                2024
                18 July 2024
                : 13
                : 1
                : 2377606
                Affiliations
                [a ]Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE, USA
                [b ]Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln , Lincoln, NE, USA
                [c ]Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, MB, Canada
                [d ]National Microbiology Laboratory, Public Health Agency of Canada , Winnipeg, MB, Canada
                Author notes
                [CONTACT ] Qingsheng Li qli@ 123456unl.edu Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln , 4240 Fair St, Lincoln, NE 68583, USA
                Subhra Mandal subhramandal@ 123456gmail.com , smandal3@ 123456unl.edu Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln , 4240 Fair St, Lincoln, NE 68583, USA

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/22221751.2024.2377606.

                Article
                2377606
                10.1080/22221751.2024.2377606
                11259082
                38979723
                97cc5b98-2c14-4b57-8c61-8288c669cf0b
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 6, Tables: 0, Equations: 1, References: 47, Pages: 19, Words: 10776
                Categories
                Research Article
                Research Article

                hiv vaccine,prophylaxis,cold-chain friendly mrna lnps,protective immunity,multi-epitope viral pcs

                Comments

                Comment on this article