36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co‐hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of mi RNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory mi RNA‐target circuits under Cd stress. A total of 87 721 unigenes and 356 mi RNAs were identified by deep sequencing, and 79 mi RNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 mi RNAs were validated by degradome sequencing. A gene ontology ( GO) enrichment analysis of differential mi RNA targets revealed that auxin, redox‐related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of mi RNA targets that displayed negatively correlated expression profiles. Ten mi RNA‐target pairs also exhibited negative correlations according to a real‐time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd‐responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread translational inhibition by plant miRNAs and siRNAs.

          High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA-guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metals, toxicity and oxidative stress.

            Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.

              Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
                Bookmark

                Author and article information

                Journal
                Plant Biotechnol J
                Plant Biotechnol. J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                23 January 2016
                June 2016
                : 14
                : 6 ( doiID: 10.1111/pbi.2016.14.issue-6 )
                : 1470-1483
                Affiliations
                [ 1 ] State Key Laboratory of Tree Genetics and BreedingChinese Academy of Forestry BeijingChina
                [ 2 ] Key Laboratory of Tree Breeding of Zhejiang Province The Research Institute of Subtropical of ForestryChinese Academy of Forestry Hangzhou ZhejiangChina
                [ 3 ] Key Laboratory of Agricultural Ecology and Environment College of ForestryShandong Agricultural University Tai'an ShandongChina
                Author notes
                [*] [* ] Correspondence (Tel +86‐18615226737; fax +86‐538‐8249164; email jhli@ 123456sdau.edu.cn )

                and

                (Tel 86‐0571‐63311860; fax +86‐571‐63341304; email zhuory@ 123456gmail.com )

                [†]

                These authors contributed equally to this work.

                Article
                PBI12512
                10.1111/pbi.12512
                5066797
                26801211
                97bf21a5-cde6-4341-8f75-7e8711ece902
                © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 May 2015
                : 05 November 2015
                : 13 November 2015
                Page count
                Pages: 14
                Funding
                Funded by: National High Technology Research and Development Program of China
                Award ID: 2013AA102701‐3
                Funded by: National Nonprofit Institute Research Grant of CAF
                Award ID: TGB2013008
                Funded by: National Natural Science Foundation of China
                Award ID: 31200465
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                pbi12512
                June 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.5 mode:remove_FC converted:17.10.2016

                Biotechnology
                sedum alfredii hance,cadmium stress,phytoremediation,integration analysis,coexpression network

                Comments

                Comment on this article