17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.

          Abstract

          Deterministic sources of entangled photons are important for photonic quantum networks, but many applications are only possible when their wavelengths are tunable. Here, the authors use on-chip strain engineering to demonstrate such a source with silicon-integrated InAs/GaAs quantum dots.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long-distance quantum communication with atomic ensembles and linear optics

          , , (2001)
          Quantum communication holds a promise for absolutely secure transmission of secret messages and faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for physical implementation of quantum communication. However, due to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. We describe a scheme that allows to implement robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and therefore well fits the status of the current experimental technology. We show that the communication efficiency scale polynomially with the channel length thereby facilitating scalability to very long distances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Photo-induced charge transfer across the interface between organic molecular crystals and polymers

            Photo-induced charge transfer of positive and negative charges across the interface between an ordered organic semiconductor and a polymeric insulator is observed in the field-effect experiments. Immobilization of the transferred charge in the polymer results in a shift of the field-effect threshold of polaronic conduction along the interface in the semiconductor, which allows for direct measurements of the charge transfer rate. The transfer occurs when the photon energy exceeds the absorption edge of the semiconductor. The direction of the transverse electric field at the interface determines the sign of the transferred charge; the transfer rate is controlled by the field magnitude and light intensity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Caustic activation of rain showers

              We show quantitatively how the collision rate of droplets of visible moisture in turbulent air increases very abruptly as the intensity of the turbulence passes a threshold, due to the formation of fold caustics in their velocity field. The formation of caustics is an activated process, in which a measure of the intensity of the turbulence, termed the Stokes number St, is analogous to temperature in a chemical reaction: the rate of collision contains a factor exp(-C/St). Our results are relevant to the long-standing problem of explaining the rapid onset of rainfall from convecting clouds. Our theory does not involve spatial clustering of particles.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 January 2016
                2016
                : 7
                : 10387
                Affiliations
                [1 ]Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
                [2 ]Material Systems for Nanoelectronics, Chemnitz University of Technology , Reichenhainer strasse 70, 09107 Chemnitz, Germany
                Author notes
                Article
                ncomms10387
                10.1038/ncomms10387
                4737807
                26813326
                97bc625c-a1b9-47f7-85ba-a5ed86ae1cbd
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 06 November 2015
                : 03 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article