79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRIM E3 Ligases Interfere with Early and Late Stages of the Retroviral Life Cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Members of the TRIpartite interaction Motif (TRIM) family of E3 ligases have been shown to exhibit antiviral activities. Here we report a near comprehensive screen for antiretroviral activities of 55 TRIM proteins (36 human, 19 mouse). We identified ∼20 TRIM proteins that, when transiently expressed in HEK293 cells, affect the entry or release of human immunodeficiency virus 1 (HIV), murine leukemia virus (MLV), or avian leukosis virus (ALV). While TRIM11 and 31 inhibited HIV entry, TRIM11 enhanced N-MLV entry by interfering with Ref1 restriction. Strikingly, many TRIM proteins affected late stages of the viral life cycle. Gene silencing of endogenously expressed TRIM 25, 31, and 62 inhibited viral release indicating that they play an important role at late stages of the viral life cycle. In contrast, downregulation of TRIM11 and 15 enhanced virus release suggesting that these proteins contribute to the endogenous restriction of retroviruses in cells.

          Author Summary

          A lot of excitement in the field of innate immunity to retroviruses such as HIV has come from the discovery of TRIM5 as a key player in cross species restriction. TRIM5 belongs to a family of E3 ligases with over 70 members, a number of which have exhibited antiviral activity. These findings have led to the hypothesis that several TRIM proteins may contribute to the innate immunity to retroviruses. In this manuscript, we systematically test the antiviral activities of 55 human and mouse TRIM proteins. The results are astonishingly complex with activities affecting both early and late stages of the retroviral life cycle. Importantly, a number of TRIM proteins that affect HIV or MLV replication upon overexpression, enhance virus entry or release when downregulated by gene silencing. These experiments suggest that additional TRIM proteins contribute to the endogenous restriction of retroviruses. Future work should focus on the identification of TRIM proteins that are upregulated specifically in response to interferons as well as the mechanisms by which the identified proteins interfere with retroviral replication.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission.

          The spread of retroviruses between cells is estimated to be 2-3 orders of magnitude more efficient when cells can physically interact with each other. The underlying mechanism is largely unknown, but transfer is believed to occur through large-surface interfaces, called virological or infectious synapses. Here, we report the direct visualization of cell-to-cell transmission of retroviruses in living cells. Our results reveal a mechanism of virus transport from infected to non-infected cells, involving thin filopodial bridges. These filopodia originate from non-infected cells and interact, through their tips, with infected cells. A strong association of the viral envelope glycoprotein (Env) in an infected cell with the receptor molecules in a target cell generates a stable bridge. Viruses then move along the outer surface of the filopodial bridge toward the target cell. Our data suggest that retroviruses spread by exploiting an inherent ability of filopodia to transport ligands from cell to cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visualization of retroviral replication in living cells reveals budding into multivesicular bodies.

            Retroviral assembly and budding is driven by the Gag polyprotein and requires the host-derived vacuolar protein sorting (vps) machinery. With the exception of human immunodeficiency virus (HIV)-infected macrophages, current models predict that the vps machinery is recruited by Gag to viral budding sites at the cell surface. However, here we demonstrate that HIV Gag and murine leukemia virus (MLV) Gag also drive assembly intracellularly in cell types including 293 and HeLa cells, previously believed to exclusively support budding from the plasma membrane. Using live confocal microscopy in conjunction with electron microscopy of cells generating fluorescently labeled virions or virus-like particles, we observed that these retroviruses utilize late endosomal membranes/multivesicular bodies as assembly sites, implying an endosome-based pathway for viral egress. These data suggest that retroviruses can interact with the vps sorting machinery in a more traditional sense, directly linked to the mechanism by which cellular proteins are sorted into multivesicular endosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic immunity: a front-line defense against viral attack.

              In addition to the conventional innate and acquired immune responses, complex organisms have evolved an array of dominant, constitutively expressed genes that suppress or prevent viral infections. Two major cellular defenses against infection by retroviruses are the Fv1 and TRIM5 class of inhibitors that target incoming retroviral capsids and the APOBEC3 class of cytidine deaminases that hypermutate and destabilize retroviral genomes. Additional, less well characterized activities also inhibit viral replication. Here, the present understanding of these 'intrinsic' immune mechanisms is reviewed and their role in protection from retroviral infection is discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                plpa
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2008
                1 February 2008
                : 4
                : 2
                : e16
                Affiliations
                [1]Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
                Institute for Research in Biomedicine, Switzerland
                Author notes
                * To whom correspondence should be addressed. E-mail: walther.mothes@ 123456yale.edu
                Article
                07-PLPA-RA-0403R2 plpa-04-02-01
                10.1371/journal.ppat.0040016
                2222954
                18248090
                97aad356-60b7-48d5-b345-4d1f5e2deff5
                Copyright: © 2008 Uchil et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 July 2007
                : 17 December 2007
                Page count
                Pages: 13
                Categories
                Research Article
                Microbiology
                Virology
                Viruses
                In Vitro
                Mus
                Homo
                Custom metadata
                Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W (2008) TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog 4(2): e16. doi: 10.1371/journal.ppat.0040016

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article