19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          A cortical representation of the local visual environment.

          Medial temporal brain regions such as the hippocampal formation and parahippocampal cortex have been generally implicated in navigation and visual memory. However, the specific function of each of these regions is not yet clear. Here we present evidence that a particular area within human parahippocampal cortex is involved in a critical component of navigation: perceiving the local visual environment. This region, which we name the 'parahippocampal place area' (PPA), responds selectively and automatically in functional magnetic resonance imaging (fMRI) to passively viewed scenes, but only weakly to single objects and not at all to faces. The critical factor for this activation appears to be the presence in the stimulus of information about the layout of local space. The response in the PPA to scenes with spatial layout but no discrete objects (empty rooms) is as strong as the response to complex meaningful scenes containing multiple objects (the same rooms furnished) and over twice as strong as the response to arrays of multiple objects without three-dimensional spatial context (the furniture from these rooms on a blank background). This response is reduced if the surfaces in the scene are rearranged so that they no longer define a coherent space. We propose that the PPA represents places by encoding the geometry of the local environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Path integration and the neural basis of the 'cognitive map'.

            The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human hippocampus and spatial and episodic memory.

              Finding one's way around an environment and remembering the events that occur within it are crucial cognitive abilities that have been linked to the hippocampus and medial temporal lobes. Our review of neuropsychological, behavioral, and neuroimaging studies of human hippocampal involvement in spatial memory concentrates on three important concepts in this field: spatial frameworks, dimensionality, and orientation and self-motion. We also compare variation in hippocampal structure and function across and within species. We discuss how its spatial role relates to its accepted role in episodic memory. Five related studies use virtual reality to examine these two types of memory in ecologically valid situations. While processing of spatial scenes involves the parahippocampus, the right hippocampus appears particularly involved in memory for locations within an environment, with the left hippocampus more involved in context-dependent episodic or autobiographical memory.
                Bookmark

                Author and article information

                Journal
                J Gerontol A Biol Sci Med Sci
                J. Gerontol. A Biol. Sci. Med. Sci
                gerona
                gerona
                The Journals of Gerontology Series A: Biological Sciences and Medical Sciences
                Oxford University Press (US )
                1079-5006
                1758-535X
                September 2015
                16 September 2014
                16 September 2014
                : 70
                : 9
                : 1059-1066
                Affiliations
                1McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts.
                2The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University , Ramat-Gan, Israel.
                Author notes
                Address correspondence to Eitan Okun, PhD, The Mina and Everard Goodman Faculty of Life Sciences, The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 52900, Israel. Email: eitan.okun@ 123456biu.ac.il

                Decision Editor: Rafael de Cabo, PhD

                Article
                10.1093/gerona/glu162
                4536905
                25227128
                978e6af6-5ada-4a51-913c-3e6ee2782169
                © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 8
                Categories
                Original Article

                Geriatric medicine
                exercise,spatial learning,cardiovascular fitness,hippocampus,navigation
                Geriatric medicine
                exercise, spatial learning, cardiovascular fitness, hippocampus, navigation

                Comments

                Comment on this article