61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C 4 photosynthesis in Miscanthus × giganteus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          C 4 photosynthesis is impaired typically by chilling, but not in Miscanthus × giganteus. Global transcript profiling reveals that expression of many key photosynthetic genes is maintained or upregulated during chilling in M. × giganteus, in contrast to maize, suggesting a basis for chilling-tolerant C 4 photosynthesis.

          Abstract

          Miscanthus × giganteus is exceptional among C 4 plants in its ability to acclimate to chilling (≤14 °C) and maintain a high photosynthetic capacity, in sharp contrast to maize, leading to very high productivity even in cool temperate climates. To identify the mechanisms that underlie this acclimation, RNA was isolated from M × giganteus leaves in chilling and nonchilling conditions and hybridized to microarrays developed for its close relative Zea mays. Among 21 000 array probes that yielded robust signals, 723 showed significant expression change under chilling. Approximately half of these were for annotated genes. Thirty genes associated with chloroplast membrane function were all upregulated. Increases in transcripts for the lhcb5 (chlorophyll a/b-binding protein CP26), ndhF (NADH dehydrogenase F, chloroplast), atpA (ATP synthase alpha subunit), psbA (D1), petA (cytochrome f), and lhcb4 (chlorophyll a/b-binding protein CP29), relative to housekeeping genes in M. × giganteus, were confirmed by quantitative reverse-transcription PCR. In contrast, psbo1, lhcb5, psbA, and lhcb4 were all significantly decreased in Z. mays after 14 days of chilling. Western blot analysis of the D1 protein and LHCII type II chlorophyll a/b-binding protein also showed significant increases in M. × giganteus during chilling and significant decreases in Z. mays. Compared to other C 4 species, M. × giganteus grown in chilling conditions appears to counteract the loss of photosynthetic proteins and proteins protecting photosystem II typically observed in other species by increasing mRNA levels for their synthesis.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Normalization of cDNA microarray data.

          Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array. Print-tip loess normalization provides a well-tested general purpose normalization method which has given good results on a wide range of arrays. The method may be refined by using quality weights for individual spots. The method is best combined with diagnostic plots of the data which display the spatial and intensity trends. When diagnostic plots show that biases still remain in the data after normalization, further normalization steps such as plate-order normalization or scale-normalization between the arrays may be undertaken. Composite normalization may be used when control spots are available which are known to be not differentially expressed. Variations on loess normalization include global loess normalization and two-dimensional normalization. Detailed commands are given to implement the normalization techniques using freely available software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            More productive than maize in the Midwest: How does Miscanthus do it?

            In the first side-by-side large-scale trials of these two C(4) crops in the U.S. Corn Belt, Miscanthus (Miscanthus x giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (epsilon(i)) and its conversion into aboveground biomass (epsilon(ca)). Averaged over two growing seasons, epsilon(ca) did not differ, but epsilon(i) was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO(2) uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO(2) responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO(2) assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C(4) photosynthetic productivity is not achieved by modern temperate maize cultivars.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rubisco activase - Rubisco's catalytic chaperone.

              The current status of research on the structure, regulation, mechanism and importance of Rubisco activase is reviewed. The activase is now recognized to be a member of the AAA(+) family, whose members participate in macromolecular complexes that perform diverse chaperone-like functions. The conserved nucleotide-binding domain of AAA(+) family members appears to have a common fold that when applied to the activase is generally consistent with previous site-directed mutagenesis studies of the activase. Regulation of the activase in species containing both isoforms can occur via redox changes in the carboxy-terminus of the larger isoform, mediated by thioredoxin-f, which alters the response of activase to the ratio of ADP to ATP in the stroma. Studies of Rubisco activation in transgenic Arabidopsis plants demonstrated that light modulation is dependent on redox regulation of the larger isoform, providing a model for the regulation in other species. Further insights into the mechanism of the activase have emerged from an analysis of the crystal structures of Rubisco conformational variants and the identification of Rubisco residues that confer specificity in its interaction with the activase. The physiological importance of the activase is reinforced by recent studies indicating that it plays a vital role in the response of photosynthesis to temperature. Rubisco activase is one of a new type of chaperone, which in this case functions to promote and maintain the catalytic activity of Rubisco.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                July 2014
                22 June 2014
                22 June 2014
                : 65
                : 13 , Special Issue: C4 and CAM Photosynthesis in the New Millenium
                : 3737-3747
                Affiliations
                1Proctor and Gamble, 8700 South Mason-Montgomery Road Mason , OH 45040, USA
                2Department of Crop Sciences, University of Illinois , 389 Edward R. Madigan Laboratory, 1201W Gregory Drive, Urbana, IL 61801, USA
                3Monsanto Company, Chesterfield Village Research Center , 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
                4Energy Biosciences Institute, University of Illinois, 1200 Institute for Genomic Biology , 1206W. Gregory Drive, Urbana, IL 61801, USA
                Author notes
                * To whom correspondence should be addressed. E-mail: slong@ 123456illinois.edu
                Article
                10.1093/jxb/eru209
                4085969
                24958895
                977989fc-20eb-42ec-9377-d4db0fea0139
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 11
                Categories
                Research Paper

                Plant science & Botany
                c4 photosynthesis,chilling,chlorophyll a/b-binding protein,cold,d1 protein,lhcii,low temperature,maize,miscanthus,transcription.

                Comments

                Comment on this article