8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the “phosphorylation in water problem”. We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Why nature chose phosphate to modify proteins.

          The advantageous chemical properties of the phosphate ester linkage were exploited early in evolution to generate the phosphate diester linkages that join neighbouring bases in RNA and DNA (Westheimer 1987 Science 235, 1173-1178). Following the fixation of the genetic code, another use for phosphate ester modification was found, namely reversible phosphorylation of the three hydroxyamino acids, serine, threonine and tyrosine, in proteins. During the course of evolution, phosphorylation emerged as one of the most prominent types of post-translational modification, because of its versatility and ready reversibility. Phosphoamino acids generated by protein phosphorylation act as new chemical entities that do not resemble any natural amino acid, and thereby provide a means of diversifying the chemical nature of protein surfaces. A protein-linked phosphate group can form hydrogen bonds or salt bridges either intra- or intermolecularly, creating stronger hydrogen bonds with arginine than either aspartate or glutamate. The unique size of the ionic shell and charge properties of covalently attached phosphate allow specific and inducible recognition of phosphoproteins by phosphospecific-binding domains in other proteins, thus promoting inducible protein-protein interaction. In this manner, phosphorylation serves as a switch that allows signal transduction networks to transmit signals in response to extracellular stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A reassessment of prebiotic organic synthesis in neutral planetary atmospheres.

            The action of an electric discharge on reduced gas mixtures such as H(2)O, CH(4) and NH(3) (or N(2)) results in the production of several biologically important organic compounds including amino acids. However, it is now generally held that the early Earth's atmosphere was likely not reducing, but was dominated by N(2) and CO(2). The synthesis of organic compounds by the action of electric discharges on neutral gas mixtures has been shown to be much less efficient. We show here that contrary to previous reports, significant amounts of amino acids are produced from neutral gas mixtures. The low yields previously reported appear to be the outcome of oxidation of the organic compounds during hydrolytic workup by nitrite and nitrate produced in the reactions. The yield of amino acids is greatly increased when oxidation inhibitors, such as ferrous iron, are added prior to hydrolysis. Organic synthesis from neutral atmospheres may have depended on the oceanic availability of oxidation inhibitors as well as on the nature of the primitive atmosphere itself. The results reported here suggest that endogenous synthesis from neutral atmospheres may be more important than previously thought.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inorganic polyphosphate in mammalian cells and tissues.

              Inorganic polyphosphate (polyP), a linear polymer of hundreds of orthophosphate (Pi) residues linked by high-energy, phosphoanhydride bonds, has been identified and measured in a variety of mammalian cell lines and tissues by unambiguous enzyme methods. Subpicomole amounts of polyP (0.5 pmol/100 micrograms of protein) were determined by its conversion to ATP by Escherichia coli polyphosphate kinase and, alternatively, to Pi by Saccharomyces cerevisiae exopolyphosphatase. Levels of 25 to 120 microM (in terms of Pi residues), in chains 50 to 800 residues long, were found in rodent tissues (brain, heart, kidneys, liver, and lungs) and in subcellular fractions (nuclei, mitochondria, plasma membranes, and microsomes). PolyP in brain was predominantly near 800 residues and found at similar levels pre- and postnatally. Conversion of Pi into polyP by cell lines of fibroblasts, T-cells, kidney, and adrenal cells attained levels in excess of 10 pmol per mg of cell protein per h. Synthesis of polyP from Pi in the medium bypasses intracellular Pi and ATP pools suggesting the direct involvement of membrane component(s). In confluent PC12 (adrenal pheochromocytoma) cells, polyP turnover was virtually complete in an hour, whereas in fibroblasts there was little turnover in four hours. The ubiquity of polyP and variations in its size, location, and metabolism are indicative of a multiplicity of functions for this polymer in mammalian systems.
                Bookmark

                Author and article information

                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                29 July 2017
                September 2017
                : 7
                : 3
                : 32
                Affiliations
                Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA; meghak@ 123456scripps.edu (M.K.); cgibard@ 123456scripps.edu (C.G.); sbhowmik@ 123456scripps.edu (S.B.)
                Author notes
                [* ]Correspondence: rkrishna@ 123456scripps.edu ; Tel.: +1-858-784-8520; Fax: +1-858-784-9573
                Author information
                https://orcid.org/0000-0001-5238-610X
                Article
                life-07-00032
                10.3390/life7030032
                5617957
                28758921
                976c93c9-dc1b-4707-94f8-537887fccfa5
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2017
                : 27 July 2017
                Categories
                Review

                prebiotic phosphorylation,nitrogen-phosphorus derivatives,phosphoramidates,(di)amidophosphate,origins of life

                Comments

                Comment on this article