7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accelerated Universe from Gravity Leaking to Extra Dimensions

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We discuss the idea that the accelerated Universe could be the result of the gravitational leakage into extra dimensions on Hubble distances rather than the consequence of non-zero cosmological constant.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

          We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 0) and a current acceleration of the expansion (i.e., q_0 0, the spectroscopically confirmed SNe Ia are consistent with q_0 0 at the 3.0 sigma and 4.0 sigma confidence levels, for two fitting methods respectively. Fixing a ``minimal'' mass density, Omega_M=0.2, results in the weakest detection, Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior (Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7 sigma to 8 sigma level. We estimate the size of systematic errors, including evolution, extinction, sample selection bias, local flows, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Omega_Lambda=0 and q_0 > 0.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Measurements of Omega and Lambda from 42 High-Redshift Supernovae

            We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Hierarchy Problem and New Dimensions at a Millimeter

              We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed weakness of gravity on distances \(\gsim\) 1 mm is due to the existence of \(n \geq 2\) new compact spatial dimensions large compared to the weak scale. The Planck scale \(M_{Pl} \sim G_N^{-1/2}\) is not a fundamental scale; its enormity is simply a consequence of the large size of the new dimensions. While gravitons can freely propagate in the new dimensions, at sub-weak energies the Standard Model (SM) fields must be localized to a 4-dimensional manifold of weak scale "thickness" in the extra dimensions. This picture leads to a number of striking signals for accelerator and laboratory experiments. For the case of \(n=2\) new dimensions, planned sub-millimeter measurements of gravity may observe the transition from \(1/r^2 \to 1/r^4\) Newtonian gravitation. For any number of new dimensions, the LHC and NLC could observe strong quantum gravitational interactions. Furthermore, SM particles can be kicked off our 4 dimensional manifold into the new dimensions, carrying away energy, and leading to an abrupt decrease in events with high transverse momentum \(p_T \gsim\) TeV. For certain compact manifolds, such particles will keep circling in the extra dimensions, periodically returning, colliding with and depositing energy to our four dimensional vacuum with frequencies of \( \sim 10^{12}\) Hz or larger. As a concrete illustration, we construct a model with SM fields localised on the 4-dimensional throat of a vortex in 6 dimensions, with a Pati-Salam gauge symmetry \(SU(4) \times SU(2) \times SU(2)\) in the bulk.
                Bookmark

                Author and article information

                Journal
                03 May 2001
                Article
                10.1103/PhysRevD.65.044023
                astro-ph/0105068
                9767d149-d96b-4e51-b17a-478d35c556a3
                History
                Custom metadata
                NYU-TH/01/04/03
                Phys.Rev.D65:044023,2002
                20 pages, 6 figures
                astro-ph hep-ph hep-th

                Comments

                Comment on this article