16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer’s patches of mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lipid sensor oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α) secreted in the proximal intestine, is endowed with several distinctive homeostatic properties, such as control of appetite, anti-inflammatory activity, stimulation of lipolysis and fatty acid oxidation. When administered exogenously, OEA has beneficial effects in several cognitive paradigms; therefore, in all respects, OEA can be considered a hormone of the gut-brain axis. Here we report an unexplored modulatory effect of OEA on the intestinal microbiota and on immune response. Our study shows for the first time that sub-chronic OEA administration to mice fed a normal chow pellet diet, changes the faecal microbiota profile, shifting the Firmicutes:Bacteroidetes ratio in favour of Bacteroidetes (in particular Bacteroides genus) and decreasing Firmicutes ( Lactobacillus), and reduces intestinal cytokines expression by immune cells isolated from Peyer’s patches. Our results suggest that sub-chronic OEA treatment modulates gut microbiota composition towards a “lean-like phenotype”, and polarises gut-specific immune responses mimicking the effect of a diet low in fat and high in polysaccharides content.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway

          Background & Aims While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet. Methods C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks. Results HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice. Conclusions HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Macrophage Polarisation: an Immunohistochemical Approach for Identifying M1 and M2 Macrophages

            Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn’s disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice

              In humans, the composition of gut commensal bacteria is closely correlated with obesity. The bacteria modulate metabolites and influence host immunity. In this study, we attempted to determine whether there is a direct correlation between specific commensal bacteria and host metabolism. As mice aged, we found significantly reduced body weight and fat mass in Atg7ΔCD11c mice when compared with Atg7f/f mice. When mice shared commensal bacteria by co-housing or feces transfer experiments, body weight and fat mass were similar in both mouse groups. By pyrosequencing analysis, Bacteroides acidifaciens (BA) was significantly increased in feces of Atg7ΔCD11c mice compared with those of control Atg7f/f mice. Wild-type C57BL/6 (B6) mice fed with BA were significantly more likely to gain less weight and fat mass than mice fed with PBS. Of note, the expression level of peroxisome proliferator-activated receptor alpha (PPARα) was consistently increased in the adipose tissues of Atg7ΔCD11c mice, B6 mice transferred with fecal microbiota of Atg7ΔCD11c mice, and BA-fed B6 mice. Furthermore, B6 mice fed with BA showed elevated insulin levels in serum, accompanied by increased serum glucagon-like peptide-1 and decreased intestinal dipeptidyl peptidase-4. These finding suggest that BA may have potential for treatment of metabolic diseases such as diabetes and obesity.
                Bookmark

                Author and article information

                Contributors
                beatrice.passani@unifi.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 October 2018
                5 October 2018
                2018
                : 8
                : 14881
                Affiliations
                [1 ]ISNI 0000 0004 1757 2304, GRID grid.8404.8, Dipartimento di Biologia, , Università di Firenze, ; Firenze, Italy
                [2 ]ISNI 0000 0004 1757 2304, GRID grid.8404.8, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, , Universitá di Firenze, ; Firenze, Italy
                [3 ]ISNI 0000 0004 1757 2304, GRID grid.8404.8, Dipartimento di Scienze della Salute, , Università di Firenze, ; Firenze, Italy
                [4 ]ISNI 0000000123318773, GRID grid.7872.a, Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, , University College Cork, ; Cork, Ireland
                [5 ]ISNI 0000 0004 1757 2304, GRID grid.8404.8, Dipartimento di Medicina Sperimentale e Clinica, , Università di Firenze, ; Firenze, Italy
                [6 ]Instituto di Biologia e Biotecnologie Agrarie (IBBA), Consiglio Nazionale delle Ricerce (CNR), Pisa, Italy
                Author information
                http://orcid.org/0000-0002-7812-9029
                http://orcid.org/0000-0002-2222-6524
                Article
                32925
                10.1038/s41598-018-32925-x
                6173739
                30291258
                975b4687-fc0d-4367-9035-f332b204d216
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 April 2018
                : 14 September 2018
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Brazil, process 201511/2014-2), and Fondazione Umberto Veronesi
                Funded by: FundRef https://doi.org/10.13039/501100003196, Ministero della Salute (Ministry of Health, Italy);
                Award ID: 2011e2012 (GR-201102346829)
                Award Recipient :
                Funded by: JPI-HDHL "Nutrition and cognition" Ambrosiac
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article