8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The History of Cenozoic Carbonate Flux in the Atlantic Ocean Constrained by Multiple Regional Carbonate Compensation Depth Reconstructions

      1 , 1
      Geochemistry, Geophysics, Geosystems
      American Geophysical Union (AGU)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum.

          The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid ( 100,000 years). These findings indicate that a large mass of carbon (>2000 x 10(9) metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            An astronomically dated record of Earth’s climate and its predictability over the last 66 million years

            Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Generic Mapping Tools Version 6

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Geochemistry, Geophysics, Geosystems
                Geochem Geophys Geosyst
                American Geophysical Union (AGU)
                1525-2027
                1525-2027
                November 2022
                November 02 2022
                November 2022
                : 23
                : 11
                Affiliations
                [1 ]EarthByte Group School of Geosciences University of Sydney Sydney Australia
                Article
                10.1029/2022GC010667
                97555135-7e9c-4309-aedb-a61bd43a102b
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article