88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global pattern of soil carbon losses due to the conversion of forests to agricultural land

      research-article
      a , 1 , 1 , 2 , 3
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant ( k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Temperature-associated increases in the global soil respiration record.

          Soil respiration, R(S), the flux of microbially and plant-respired carbon dioxide (CO(2)) from the soil surface to the atmosphere, is the second-largest terrestrial carbon flux. However, the dynamics of R(S) are not well understood and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses and fundamental biokinetics all suggest that R(S) should change with climate. This has been difficult to confirm observationally because of the high spatial variability of R(S), inaccessibility of the soil medium and the inability of remote-sensing instruments to measure R(S) on large scales. Despite these constraints, it may be possible to discern climate-driven changes in regional or global R(S) values in the extant four-decade record of R(S) chamber measurements. Here we construct a database of worldwide R(S) observations matched with high-resolution historical climate data and find a previously unknown temporal trend in the R(S) record after accounting for mean annual climate, leaf area, nitrogen deposition and changes in CO(2) measurement technique. We find that the air temperature anomaly (the deviation from the 1961-1990 mean) is significantly and positively correlated with changes in R(S). We estimate that the global R(S) in 2008 (that is, the flux integrated over the Earth's land surface over 2008) was 98 +/- 12 Pg C and that it increased by 0.1 Pg C yr(-1) between 1989 and 2008, implying a global R(S) response to air temperature (Q(10)) of 1.5. An increasing global R(S) value does not necessarily constitute a positive feedback to the atmosphere, as it could be driven by higher carbon inputs to soil rather than by mobilization of stored older carbon. The available data are, however, consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization.

            Global warming is predicted to be most pronounced at high latitudes, and observational evidence over the past 25 years suggests that this warming is already under way. One-third of the global soil carbon pool is stored in northern latitudes, so there is considerable interest in understanding how the carbon balance of northern ecosystems will respond to climate warming. Observations of controls over plant productivity in tundra and boreal ecosystems have been used to build a conceptual model of response to warming, where warmer soils and increased decomposition of plant litter increase nutrient availability, which, in turn, stimulates plant production and increases ecosystem carbon storage. Here we present the results of a long-term fertilization experiment in Alaskan tundra, in which increased nutrient availability caused a net ecosystem loss of almost 2,000 grams of carbon per square meter over 20 years. We found that annual aboveground plant production doubled during the experiment. Losses of carbon and nitrogen from deep soil layers, however, were substantial and more than offset the increased carbon and nitrogen storage in plant biomass and litter. Our study suggests that projected release of soil nutrients associated with high-latitude warming may further amplify carbon release from soils, causing a net loss of ecosystem carbon and a positive feedback to climate warming.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon losses from all soils across England and Wales 1978-2003.

              More than twice as much carbon is held in soils as in vegetation or the atmosphere, and changes in soil carbon content can have a large effect on the global carbon budget. The possibility that climate change is being reinforced by increased carbon dioxide emissions from soils owing to rising temperature is the subject of a continuing debate. But evidence for the suggested feedback mechanism has to date come solely from small-scale laboratory and field experiments and modelling studies. Here we use data from the National Soil Inventory of England and Wales obtained between 1978 and 2003 to show that carbon was lost from soils across England and Wales over the survey period at a mean rate of 0.6% yr(-1) (relative to the existing soil carbon content). We find that the relative rate of carbon loss increased with soil carbon content and was more than 2% yr(-1) in soils with carbon contents greater than 100 g kg(-1). The relationship between rate of carbon loss and carbon content is irrespective of land use, suggesting a link to climate change. Our findings indicate that losses of soil carbon in England and Wales--and by inference in other temperate regions-are likely to have been offsetting absorption of carbon by terrestrial sinks.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 February 2014
                2014
                : 4
                : 4062
                Affiliations
                [1 ]State Key Laboratory of Soil Erosion and Dryland Farming in the Loess Plateau, Northwest A&F University , Yangling, 712100 China
                [2 ]College of Agronomy, Shihezi University , Shihezi, 832003 China
                [3 ]Beijing Museum of Natural History , Beijing 100050, China
                Author notes
                Article
                srep04062
                10.1038/srep04062
                3920271
                24513580
                9721237f-2b25-43e8-a414-986a5fab2ccd
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 13 September 2013
                : 24 January 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content14

                Cited by82

                Most referenced authors263