5
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lessons from a pandemic for systems-oriented sustainability research

      review-article
      *
      Science Advances
      American Association for the Advancement of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research examining COVID-19 impacts on sustainability could better incorporate systems perspectives.

          Abstract

          This review examines research on environmental impacts of coronavirus disease 2019 (COVID-19) from a systems-oriented sustainability perspective, focusing on three areas: air quality and human health, climate change, and production and consumption. The review assesses whether and how this COVID-19–focused research (i) examines components of an integrated system; (ii) accounts for interactions including complex, adaptive dynamics; and (iii) is oriented to informing action. It finds that this research to date has not comprehensively accounted for complex, coupled interactions, especially involving societal factors, potentially leading to erroneous conclusions and hampering efforts to draw broader insights across sustainability-relevant domains. Lack of systems perspective in COVID-19 research reflects a broader challenge in environmental research, which often neglects societal feedbacks. Practical steps through which researchers can better incorporate systems perspectives include using analytical frameworks to identify important components and interactions, connecting frameworks to models and methods, and advancing sustainability science theory and methodology.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          A general framework for analyzing sustainability of social-ecological systems.

          A major problem worldwide is the potential loss of fisheries, forests, and water resources. Understanding of the processes that lead to improvements in or deterioration of natural resources is limited, because scientific disciplines use different concepts and languages to describe and explain complex social-ecological systems (SESs). Without a common framework to organize findings, isolated knowledge does not cumulate. Until recently, accepted theory has assumed that resource users will never self-organize to maintain their resources and that governments must impose solutions. Research in multiple disciplines, however, has found that some government policies accelerate resource destruction, whereas some resource users have invested their time and energy to achieve sustainability. A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The contribution of outdoor air pollution sources to premature mortality on a global scale.

            Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical Supply Shortages — The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic

              New England Journal of Medicine
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                May 2021
                26 May 2021
                : 7
                : 22
                : eabd8988
                Affiliations
                Institute for Data, Systems, and Society, and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
                Author notes
                [* ]Corresponding author. Email: selin@ 123456mit.edu
                Author information
                http://orcid.org/0000-0002-6396-5622
                Article
                abd8988
                10.1126/sciadv.abd8988
                8153715
                34039597
                97006359-16d5-4857-8436-11a3e28e0bec
                Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 20 July 2020
                : 06 April 2021
                Funding
                Funded by: National Science Foundation Integrated Socio Ecological Systems Program;
                Award ID: 1924148
                Categories
                Review
                Reviews
                SciAdv reviews
                Environmental Studies
                Environmental Studies
                Custom metadata
                Mjoy Azul

                Comments

                Comment on this article