23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The GLP-1 receptor agonists exendin-4 and liraglutide alleviate oxidative stress and cognitive and micturition deficits induced by middle cerebral artery occlusion in diabetic mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Glucagon-like peptide 1 (GLP-1) analogs protect a variety of cell types against oxidative damage and vascular and neuronal injury via binding to GLP-1 receptors. This study aimed to investigate the effects of the GLP-1 analogs exendin-4 and liraglutide on cerebral blood flow, reactive oxygen species production, expression of oxidative stress-related proteins, cognition, and pelvic sympathetic nerve-mediated bladder contraction after middle cerebral artery occlusion (MCAO) injury in the db/db mouse model of diabetes.

          Results

          Sixty minutes of MCAO increased blood and brain reactive oxygen species counts in male db/db mice, as revealed by dihydroethidium staining. MCAO also increased nuclear factor-κB and intercellular adhesion molecule-1 expression and decreased cerebral microcirculation. These effects were attenuated by treatment with exendin-4 or liraglutide. MCAO did not affect basal levels of phosphorylated Akt (p-Akt) or endothelial nitric oxide synthase (p-eNOS); however, exendin-4 and liraglutide treatments significantly enhanced p-Akt and p-eNOS levels, indicating activation of the p-Akt/p-eNOS signaling pathway. MCAO-induced motor and cognitive deficits and micturition dysfunction, indicated by reduced pelvic nerve-mediated voiding contractions and increased nonvoiding contractions, were also partially attenuated by exendin-4 treatment.

          Conclusions

          The above data indicate that treatment with GLP-1 agonists exerts protective effects against oxidative, inflammatory, and apoptotic damage in brain areas that control parasympathetic/pelvic nerve-mediated voiding contractions and cognitive and motor behaviors in a diabetic mouse model.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Bcl-2 functions in an antioxidant pathway to prevent apoptosis.

          Bcl-2 inhibits most types of apoptotic cell death, implying a common mechanism of lethality. Bcl-2 is localized to intracellular sites of oxygen free radical generation including mitochondria, endoplasmic reticula, and nuclear membranes. Antioxidants that scavenge peroxides, N-acetylcysteine and glutathione peroxidase, countered apoptotic death, while manganese superoxide dismutase did not. Bcl-2 protected cells from H2O2- and menadione-induced oxidative deaths. Bcl-2 did not prevent the cyanide-resistant oxidative burst generated by menadione. Two model systems of apoptosis showed no increment in cyanide-resistant respiration, and generation of endogenous peroxides continued at an inherent rate that was unaltered by Bcl-2. Following an apoptotic signal, cells sustained progressive lipid peroxidation. Overexpression of Bcl-2 functioned to suppress lipid peroxidation completely. We propose a model in which Bcl-2 regulates an antioxidant pathway at sites of free radical generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction

            Emerging evidence suggests that the TH17 subset of αβ T cells contributes to the development of allergic asthma. In this study we found that mice lacking αvβ8 on dendritic cells failed to generate TH17 cells in the lung and were protected from AHR in response to house dust mite and ovalbumin sensitization and challenge. Because loss of TH17 cells inhibited airway narrowing without obvious effects on airway inflammation or epithelial morphology, we examined the direct effects of TH17 cytokines on mouse and human airway smooth muscle function. IL-17A enhanced contractile force generation through a NF-κB/RhoA/ROCK2 signaling cascade. Mice lacking integrin αvβ8 on dendritic cells showed impaired activation of this pathway after OVA sensitization and challenge, and the diminished contraction of tracheal rings from these mice was reversed by IL-17A. These data indicate that IL-17A produced by TH17 cells contributes to allergen-induced AHR through direct effects on airway smooth muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4.

              Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an endogenous insulinotropic peptide that is secreted from the L cells of the gastrointestinal tract in response to food. It has potent effects on glucose-dependent insulin secretion, insulin gene expression, and pancreatic islet cell formation. In type 2 diabetes, GLP-1, by continuous infusion, can normalize blood glucose and is presently being tested in clinical trials as a therapy for this disease. More recently, GLP-1 has been found to have central nervous system (CNS) effects and to stimulate neurite outgrowth in cultured cells. We now report that GLP-1, and its longer-acting analog exendin-4, can completely protect cultured rat hippocampal neurons against glutamate-induced apoptosis. Extrapolating these effects to a well defined rodent model of neurodegeneration, GLP-1 and exendin-4 greatly reduced ibotenic acid-induced depletion of choline acetyltransferase immunoreactivity in basal forebrain cholinergic neurons. These findings identify a novel neuroprotective/neurotrophic function of GLP-1 and suggest that such peptides may have potential for halting or reversing neurodegenerative processes in CNS disorders, such as Alzheimer's disease, and in neuropathies associated with type 2 diabetes mellitus.
                Bookmark

                Author and article information

                Contributors
                +886-7-6151100-7513 , +886-7-6151100-7165 , pingchiali@gmail.com , pingchia@isu.edu.tw
                liulf@isu.edu.tw
                mjjou@isu.edu.tw
                ed101393@edah.org.tw
                Journal
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central (London )
                1471-2202
                13 June 2016
                13 June 2016
                2016
                : 17
                : 37
                Affiliations
                [ ]School of Medicine for International Students, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
                [ ]Department of Occupational Therapy, College of Medicine, I-Shou University (Yanchao Campus), Kaohsiung, Taiwan
                [ ]Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
                Article
                272
                10.1186/s12868-016-0272-9
                4907076
                27296974
                96ffcbbd-f3cc-4627-9f9c-95c379ac0471
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 25 December 2015
                : 3 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004663, Ministry of Science and Technology, Taiwan;
                Award ID: MOST 104-2314-B-214-007
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003835, I-Shou University;
                Award ID: ISU-104-07-04A
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                cerebral microcirculation,glp-1 agonist,middle cerebral artery occlusion,oxidative stress,pelvic nerve,voiding function

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content905

                Cited by29

                Most referenced authors929