7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Making a Cool Choice: The Materials Library of Magnetic Refrigeration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: not found
          • Article: not found

          Giant Magnetocaloric Effect inGd5(Si2Ge2)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transition-metal-based magnetic refrigerants for room-temperature applications.

            Magnetic refrigeration techniques based on the magnetocaloric effect (MCE) have recently been demonstrated as a promising alternative to conventional vapour-cycle refrigeration. In a material displaying the MCE, the alignment of randomly oriented magnetic moments by an external magnetic field results in heating. This heat can then be removed from the MCE material to the ambient atmosphere by heat transfer. If the magnetic field is subsequently turned off, the magnetic moments randomize again, which leads to cooling of the material below the ambient temperature. Here we report the discovery of a large magnetic entropy change in MnFeP0.45As0.55, a material that has a Curie temperature of about 300 K and which allows magnetic refrigeration at room temperature. The magnetic entropy changes reach values of 14.5 J K-1 kg-1 and 18 J K-1 kg-1 for field changes of 2 T and 5 T, respectively. The so-called giant-MCE material Gd5Ge2Si2 (ref. 2) displays similar entropy changes, but can only be used below room temperature. The refrigerant capacity of our material is also significantly greater than that of Gd (ref. 3). The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.

              A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                1614-6832
                1614-6840
                July 28 2019
                September 2019
                July 31 2019
                September 2019
                : 9
                : 34
                : 1901322
                Affiliations
                [1 ]Dresden High Magnetic Field Laboratory (HLD‐EMFL)Helmholtz‐Zentrum Dresden‐Rossendorf 01328 Dresden Germany
                [2 ]Technische Universität DarmstadtInstitut für Materialwissenschaft Alarich‐Weiss‐Str. 16 64287 Darmstadt Germany
                Article
                10.1002/aenm.201901322
                96d6d1e5-c6df-4572-9b42-0d466eee1e47
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article