21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lhx2/Ldb1-mediated trans interactions regulate olfactory receptor choice

      research-article
      1 , 2 , 1 , 2 , 3 , &
      Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The genome is partitioned into topologically associated domains (TADs) and genomic compartments of shared chromatin valance. This architecture is constrained by the DNA polymer, which precludes genic interactions between chromosomes. Here, we report a dramatic divergence from this pattern of nuclear organization that occurs in mouse olfactory sensory neurons (OSNs). In situ HiC on FAC-sorted OSNs and their progenitors shows that olfactory receptor (OR) gene clusters from 18 chromosomes make specific and robust interchromosomal contacts that increase with differentiation. These contacts are orchestrated by intergenic OR enhancers, the Greek Islands, which first contribute to the formation of OR compartments and then form a multi-chromosomal super-enhancer that associates with the single active OR. Greek Island-bound transcription factor Lhx2 and adaptor protein Ldb1 regulate the assembly and maintenance of OR compartments, Greek Island hubs, and OR transcription, providing mechanistic insight and functional support for the role of trans interactions in gene expression.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Basal cells as stem cells of the mouse trachea and human airway epithelium.

          The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor.

            Chromatin loops juxtapose distal enhancers with active promoters, but their molecular architecture and relationship with transcription remain unclear. In erythroid cells, the locus control region (LCR) and β-globin promoter form a chromatin loop that requires transcription factor GATA1 and the associated molecule Ldb1. We employed artificial zinc fingers (ZF) to tether Ldb1 to the β-globin promoter in GATA1 null erythroblasts, in which the β-globin locus is relaxed and inactive. Remarkably, targeting Ldb1 or only its self-association domain to the β-globin promoter substantially activated β-globin transcription in the absence of GATA1. Promoter-tethered Ldb1 interacted with endogenous Ldb1 complexes at the LCR to form a chromatin loop, causing recruitment and phosphorylation of RNA polymerase II. ZF-Ldb1 proteins were inactive at alleles lacking the LCR, demonstrating that their activities depend on long-range interactions. Our findings establish Ldb1 as a critical effector of GATA1-mediated loop formation and indicate that chromatin looping causally underlies gene regulation. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allelic inactivation regulates olfactory receptor gene expression.

              We suggest a model in which a hierarchy of controls is exerted on the family of odorant receptor genes to assure that a sensory neuron expresses a single receptor from a family of 1000 genes. We propose that a cis-regulatory element directs the stochastic expression of only one gene from a large array of linked receptor genes. Moreover, only one allelic array encoding multiple receptor genes is active in an individual neuron. We demonstrate that in a neuron expressing a given receptor, expression derives exclusively from one allele. In addition, we observe that alleles encoding the odorant receptors are replicated asynchronously, a phenomenon consistently associated with allelic inactivation. This model, involving inactivation of one allelic array and cis control of the active array, provides a mechanism such that individual neurons express one or a small number of receptors.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                8 December 2018
                09 January 2019
                January 2019
                09 July 2019
                : 565
                : 7740
                : 448-453
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
                [2 ]Department of Neuroscience, Columbia University, New York, NY 10032
                [3 ]Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
                Author notes

                Author Contributions

                K.M, A.H., and S.L. designed the study. K.M. performed in situ HiC in Lhx2 and Ldb1 KO mice, performed ChIP-seq in wild type and Lhx2 KO mOSNs, and performed RNA-seq in Ldb1 KO and control mOSNs and methimazole treated cells form the MOE. A.H. performed in situ HiC in mOSNs, INPs, HBCs, Olfr1507, Olfr16, and Olfr17-expressing cells. Both K.M and A.H. analyzed data with input from S.L. S.L. wrote the manuscript with input from K.M. and A.H.

                [*]

                These authors contributed equally to this work

                [& ]Correspondence to Stavros Lomvardas, sl682@ 123456columbia.edu
                Article
                NIHMS1516138
                10.1038/s41586-018-0845-0
                6436840
                30626972
                96ceb895-6d30-419c-8369-f84cf35dcac4

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article