13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the combination of fractional factorial design and chemometrics analysis for screening super-saturable quercetin-self nano emulsifying components

      , ,
      Pharmacia
      Pensoft Publishers

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quercetin is formulated in a super saturable - self-nano emulsifying (SS-SNE) to increase its stability and bioavailability. This study focuses on the screening design for SS-SNE components with a fractional factorial design (FrFD) approach and chemometric analysis. The FrFD method was chosen because it provides comprehensive benefits. The oil components used are canola and grape seed oil. Croduret 50-SS was selected as a surfactant and PEG 400 as a co-surfactant. The interaction of SNE components was evaluated using FTIR-ATR instrumentation. SNE droplet morphology was observed using a transmission electron microscope (TEM). The selected formulas were grape seed oil as oil phase at 19.6%, croduret at 60%, and PEG 400 as co-surfactant with a concentration of 16.6%. The selected formula has a droplet size of 133.27 nm, PDI of 0.181, the zeta potential of 17.00 mV, electrophoretic mobility of 1.332 µmcm/Vs, emulsification time of 10.05 seconds, a viscosity of 370.147 mPa.s, and a drug load of 31.70 mg/mL. The components of grape seed oil, croduret, and PEG 400 resulted in a quercetin carrier SNE formula that met the criteria. FrFD design and chemometric analysis in the screening process can help determine the selected formula very effectively and efficiently.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation.

            The aim of the present study is to improve solubility and bioavailability of Rosuvastatin calcium using self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Ternary phase diagrams were constructed based on Rosuvastatin calcium solubility analysis for optimizing the system. The prepared formulations were evaluated for self emulsifying time, robustness to dilution, droplet size determination and zeta potential analysis. The system was found to be robust in different pH media and dilution volume. The globule size of the optimized system was less than 200nm which could be an acceptable nanoemulsion size range. The zeta potential of the selected CN 7 SNEDDS formulation (cinnamon oil 30%; labrasol 60%; Capmul MCM C8 10%) was -29.5±0.63 with an average particle size distribution of 122nm. In vitro drug release studies showed remarkable increase in dissolution of CN7 SNEDDS compared to marketed formulation. In house developed HPLC method for determination of Rosuvastatin calcium in rat plasma was used in the bioavailability and pharmacokinetic evaluation. The relative bioavailability of self nanoemulsified formulation showed an enhanced bioavailability of 2.45 times greater than that of drug in suspension. The obtained plasma drug concentration data was processed with PKSolver 2.0 and it was best fit into the one compartment model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quercetin suppresses breast cancer stem cells (CD44 + /CD24 − ) by inhibiting the PI3K/Akt/mTOR-signaling pathway

              Cancer stem cells (CSCs) are considered the prime source of cancer recurrence, metastasis, and progression and represent important targets for developing novel anticancer agents and therapeutic strategies. The aim of this study was to investigate the effect of treating breast CSCs with the anticancer flavonoid, quercetin.
                Bookmark

                Author and article information

                Contributors
                Journal
                Pharmacia
                PHAR
                Pensoft Publishers
                2603-557X
                0428-0296
                April 05 2022
                April 05 2022
                : 69
                : 2
                : 273-284
                Article
                10.3897/pharmacia.69.e80594
                96c9c1ad-8bc2-4d70-b65c-be21f1e1468c
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article