0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ARN de interferencia (ARNi): una herramienta eficaz en agrobiotecnología Translated title: RNA interference (RNAi): an effective tool in agrobiotechnology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMEN El ARN de interferencia (ARNi) es un mecanismo evolutivamente conservado en la mayoría de las células eucariotas que permite silenciar genes mediante la degradación de ARN mensajero (ARNm) y la supresión de la síntesis de proteínas. En plantas, las moléculas de ARNi están involucradas en mecanismos de defensa contra patógenos y transposones, en la respuesta adaptativa al estrés, y en la expresión de genes relacionados con su crecimiento. El ARNi se considera una herramienta biotecnológica eficaz para silenciar la expresión de genes de microorganismos fitopatógenos, esto permite el diseño de bioplaguicidas ambientalmente seguros con una afinidad y selectividad, en muchos casos superior a la de los plaguicidas químicos. En esta revisión se señalan los últimos avances en la aplicación del ARNi en el contexto agrícola y su efectividad en el control biológico de fitopatógenos e insectos plaga. Asimismo, se presentan diversos ensayos experimentales cuyos resultados pueden ser la base para futuros bioproductos, además de algunos ejemplos disponibles en el mercado. Por último, se abordan aspectos de bioseguridad y consideraciones regulatorias necesarias para la aceptación y uso de esta tecnología a nivel global.

          Translated abstract

          ABSTRACT RNA interference (RNAi) is an evolutionarily conserved mechanism in most eukaryotic cells that allows genes to be silenced by degradation of messenger RNA (mRNA) and suppression of protein synthesis. In plants, RNAi molecules are involved in defense mechanisms against pathogens and transposons, in the adaptive response to stress, and in the expression of genes related to their growth. RNAi is an effective biotechnological tool to silence the expression of specific genes which are essential for the survival of phytopathogenic microorganisms, thus allowing the design of environmentally safe biopesticides with affinity and selectivity, in many cases greater than chemical pesticides. This review describes the latest advances in the application of RNAi in the agricultural context and its effectiveness in the biological control of phytopathogens and pest insects. Likewise, various experimental trials are presented, the results of which may be the basis for future bioproducts, as well as some examples available on the market. Finally, biosafety aspects and regulatory considerations necessary for the acceptance and use of this technology at a global level are presented.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

          Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classification and comparison of small RNAs from plants.

            Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from single-stranded precursors with a hairpin structure [referred to here as hairpin RNAs (hpRNAs)] and those derived from dsRNA precursors [small interfering RNAs (siRNAs)]. hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Argonaute2, a link between genetic and biochemical analyses of RNAi.

              Double-stranded RNA induces potent and specific gene silencing through a process referred to as RNA interference (RNAi) or posttranscriptional gene silencing (PTGS). RNAi is mediated by RNA-induced silencing complex (RISC), a sequence-specific, multicomponent nuclease that destroys messenger RNAs homologous to the silencing trigger. RISC is known to contain short RNAs ( approximately 22 nucleotides) derived from the double-stranded RNA trigger, but the protein components of this activity are unknown. Here, we report the biochemical purification of the RNAi effector nuclease from cultured Drosophila cells. The active fraction contains a ribonucleoprotein complex of approximately 500 kilodaltons. Protein microsequencing reveals that one constituent of this complex is a member of the Argonaute family of proteins, which are essential for gene silencing in Caenorhabditis elegans, Neurospora, and Arabidopsis. This observation begins the process of forging links between genetic analysis of RNAi from diverse organisms and the biochemical model of RNAi that is emerging from Drosophila in vitro systems.
                Bookmark

                Author and article information

                Journal
                biote
                Revista Colombiana de Biotecnología
                Rev. colomb. biotecnol
                Instituto de Biotecnología, Universidad Nacional de Colombia (Bogotá, Distrito Capital, Colombia )
                0123-3475
                December 2022
                : 24
                : 2
                : 59-67
                Affiliations
                [3] Buenos Aires Buenos Aires orgnameUniversidad Nacional de Quilmes Argentina mbelaich@ 123456unq.edu.ar
                [4] Mosquera Bogotá orgnameCorporación Colombiana de Investigación Agropecuaria Colombia gbarrera@ 123456agrosavia.co
                [2] Mosquera Bogotá orgnameCorporación Colombiana de Investigación Agropecuaria Colombia dtoloza@ 123456agrosavia.co
                [1] Mosquera Bogotá orgnameCorporación Colombiana de Investigación Agropecuaria Colombia mgamero@ 123456agrosavia.co
                Article
                S0123-34752022000200059 S0123-3475(22)02400200059
                10.15446/rev.colomb.biote.v24n2.99397
                96c4e332-a84c-48a3-9957-01d9b7154193

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 08 November 2021
                : 16 November 2022
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 69, Pages: 9
                Product

                SciELO Colombia

                Categories
                Revisión

                ARNi,genes,insects,phytopathogens,biological control,applications,RNAi,plagas,insectos,fitopatógenos,control biológico,aplicaciones,pests

                Comments

                Comment on this article