Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although developmental dyslexia (DD) is frequently associate with a phonological deficit, the underlying neurobiological cause remains undetermined. Recently, a new model, called “temporal sampling framework” (TSF), provided an innovative prospect in the DD study. TSF suggests that deficits in syllabic perception at a specific temporal frequencies are the critical basis for the poor reading performance in DD. This approach was presented as a possible neurobiological substrate of the phonological deficit of DD but the TSF can also easily be applied to the visual modality deficits. The deficit in the magnocellular-dorsal (M-D) pathway - often found in individuals with DD - fits well with a temporal oscillatory deficit specifically related to this visual pathway. This study investigated the visual M-D and parvocellular-ventral (P-V) pathways in dyslexic and in chronological age and IQ-matched normally reading children by measuring temporal (frequency doubling illusion) and static stimuli sensitivity, respectively. A specific deficit in M-D temporal oscillation was found. Importantly, the M-D deficit was selectively shown in poor phonological decoders. M-D deficit appears to be frequent because 75% of poor pseudo-word readers were at least 1 SD below the mean of the controls. Finally, a replication study by using a new group of poor phonological decoders and reading level controls suggested a crucial role of M-D deficit in DD. These results showed that a M-D deficit might impair the sub-lexical mechanisms that are critical for reading development. The possible link between these findings and TSF is discussed.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex.

          How natural speech is represented in the auditory cortex constitutes a major challenge for cognitive neuroscience. Although many single-unit and neuroimaging studies have yielded valuable insights about the processing of speech and matched complex sounds, the mechanisms underlying the analysis of speech dynamics in human auditory cortex remain largely unknown. Here, we show that the phase pattern of theta band (4-8 Hz) responses recorded from human auditory cortex with magnetoencephalography (MEG) reliably tracks and discriminates spoken sentences and that this discrimination ability is correlated with speech intelligibility. The findings suggest that an approximately 200 ms temporal window (period of theta oscillation) segments the incoming speech signal, resetting and sliding to track speech dynamics. This hypothesized mechanism for cortical speech analysis is based on the stimulus-induced modulation of inherent cortical rhythms and provides further evidence implicating the syllable as a computational primitive for the representation of spoken language.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A temporal sampling framework for developmental dyslexia.

            Neural coding by brain oscillations is a major focus in neuroscience, with important implications for dyslexia research. Here, I argue that an oscillatory 'temporal sampling' framework enables diverse data from developmental dyslexia to be drawn into an integrated theoretical framework. The core deficit in dyslexia is phonological. Temporal sampling of speech by neuroelectric oscillations that encode incoming information at different frequencies could explain the perceptual and phonological difficulties with syllables, rhymes and phonemes found in individuals with dyslexia. A conceptual framework based on oscillations that entrain to sensory input also has implications for other sensory theories of dyslexia, offering opportunities for integrating a diverse and confusing experimental literature. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental dyslexia: the visual attention span deficit hypothesis.

              The visual attention (VA) span is defined as the amount of distinct visual elements which can be processed in parallel in a multi-element array. Both recent empirical data and theoretical accounts suggest that a VA span deficit might contribute to developmental dyslexia, independently of a phonological disorder. In this study, this hypothesis was assessed in two large samples of French and British dyslexic children whose performance was compared to that of chronological-age matched control children. Results of the French study show that the VA span capacities account for a substantial amount of unique variance in reading, as do phonological skills. The British study replicates this finding and further reveals that the contribution of the VA span to reading performance remains even after controlling IQ, verbal fluency, vocabulary and single letter identification skills, in addition to phoneme awareness. In both studies, most dyslexic children exhibit a selective phonological or VA span disorder. Overall, these findings support a multi-factorial view of developmental dyslexia. In many cases, developmental reading disorders do not seem to be due to phonological disorders. We propose that a VA span deficit is a likely alternative underlying cognitive deficit in dyslexia.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                24 June 2014
                2014
                : 8
                : 460
                Affiliations
                [1] 1Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova Padova, Italy
                [2] 2Developmental Neuropsychology Unit, Istituto Scientifico “E. Medea” di Bosisio Parini Lecco, Italy
                [3] 3Ophthalmological Unit, Istituto Scientifico “E. Medea” di San Vito al Tagliamento Pordenone, Italy
                Author notes

                Edited by: Usha Goswami, University of Cambridge, UK

                Reviewed by: Usha Goswami, University of Cambridge, UK; John Frederick Stein, University of Oxford, UK

                *Correspondence: Simone Gori, Developmental and Cognitive Neuroscience Laboratory, Dipartimento di Psicologia Generale, Università degli Studi di Padova, Via Venezia, 8 35131 Padova, Italy e-mail: simone.gori@ 123456unipd.it

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2014.00460
                4068287
                25009484
                968d7dfd-b5fc-4f52-857c-e1e4cd4404da
                Copyright © 2014 Gori, Cecchini, Bigoni, Molteni and Facoetti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2013
                : 05 June 2014
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 104, Pages: 11, Words: 0
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                transient system,reading acquisition,phonological decoding,reading disability,visual disorder,dorsal stream

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content147

                Cited by32

                Most referenced authors595