16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue-specific metabolism and TRIM24

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epigenetic regulation of metabolism is critical to maintain cellular homeostasis in response to cellular demands and resources. Changes in the microenvironment impact functions of epigenetic regulatory enzymes and metabolic balance must maintained to avoid metabolic reprogramming and tumor progression [1]. Epigenetic regulatory proteins with catalytic functions include histone “writers” or “erasers”, which effect post-translational modifications (PTMs) of histones or non-histone proteins; chromatin remodelers, fueled by ATP to alter chromatin structure; and, enzymes that methylate DNA or reverse DNA methylation. Genes encoding key factors in metabolic signaling pathways are regulated by the activities of these enzymes, which remodel or modify chromatin. Additionally, epigenetic regulatory enzymes themselves serve as environmental sensors by relying on available metabolites as cofactors. For example, mutations in IDH1/IDH2, which encode isocitrate dehydrogenases of the tricarboxylic acid (TCA) cycle, are associated with low-grade gliomas, adult de novo acute myeloid leukemias and lymphomas. Mutant IDH1/2 exhibit gain-of-function by catalyzing conversion of α-ketoglutarate (α-KG) to 2-hydroxy glutarate (2-HG) at 100-fold higher levels than found in normal cells. 2-HG is a competitive inhibitor of α-KG-dependent dioxygenases, including TET2, which acts in reversal of DNA methylation, and Jumonji-C-domain-containing histone demethylases, which alter histone PTMS; either of which may disrupt regulated gene expression [2]. In addition to epigenetic regulatory enzymes that act as sensors of cellular metabolites and/or directly alter chromatin structure of genes that encode metabolic enzymes, proteins known as “histone readers” serve as relay switches in regulatory networks, including metabolism. Histone readers have specific domains that bind defined “signatures” of histone PTMs and act as platforms for recruitment of transcription factors, mediators or additional epigenetic response factors to chromatin. Our laboratory showed that histone reader Tripartite motif-containing protein 24 (TRIM24) not only negatively regulates p53 as an E3-ubiquitin ligase [3] but also interacts with and recruits transcription factors, such as estrogen receptor, to chromatin via a tandem plant homeodomain (PHD) and Bromodomain that binds unmethylated lysine 4 and acetylated lysine 23 of histone H3 (H3K4me0/H3K23ac) [4]. More recently, we found that ectopic expression of TRIM24 promoted oncogenic transformation of immortalized human mammary epithelial cells (TRIM24-iHMECs) and efficient growth of intermediate to high-grade xenograft tumors [5]. Molecular analysis of TRIM24-iHMECs revealed a TRIM24-dependent glycolytic and TCA cycle gene expression signature, which led to increased glucose uptake. Gene Set Enrichment Analysis revealed the glucose transport pathway as one of the top 10 pathways positively correlated with TRIM24 expression in human breast tumors (n = 1008) from the TCGA database. Interestingly, Seahorse analysis showed both ECAR (measure of glycolysis) and OCR (measure of OXPHOS) were elevated in TRIM24-iHMECs. This is unlike a conventional Warburg effect of unrestrained, aerobic glycolysis but consistent with recent reports of cancers that exploit OXPHOS or a mixture of glycolysis and OXPHOS for energy production [6]. In addition to its functions as a histone reader, TRIM24 is an E3-ubiquitin ligase that targets p53 for protein degradation. Tumor suppressor p53 plays key roles in glycolysis, OXPHOS, glutamine metabolism, lipid metabolism and antioxidant defense to impact cellular metabolism and redox balance [7]. We surveyed both p53-positive and -negative breast cancer-derived cell lines to assess p53-dependence of TRIM24-regulated metabolic response and found that GLUT1, ACO1, IDH1 and IDH2, which encode important players in glycolysis and TCA cycle, were TRIM24-activated in MCF7, SKBR3 and MDAMB231 cells despite their varied p53 status. This may be explained by our finding that TRIM24 directly regulates these genes, as well as another important player in oncogenesis and metabolism: c-myc. Our unpublished chromatin immunoprecipitation analyses show direct binding of TRIM24 to the upstream regulatory regions of c-myc, GLUT1, IDH1 and IDH2, concomitant with activation of transcription. Given the clinical correlates in breast cancer patients and apparent oncogenic effects on metabolism that we reported in human mammary epithelial cells, one might expect that loss of TRIM24 in mouse models would oppose tumor development. However, complete loss of Trim24, either globally or conditionally in the liver, caused spontaneous hepatic steatosis and ultimately hepatocellular carcinoma in animals fed normal chow. With loss of Trim24 expression, hepatocytes increased expression of lipase and inflammation signaling genes and repressed de novo lipogenesis, steroid and lipid metabolism and transport. The hepatic accumulation of lipids, fibrosis and infiltration of inflammatory macrophages recapitulated parameters of human nonalcoholic fatty liver disease (NAFLD) and non-obese-NASH [8]. Whether this outcome is the result of tissuespecific shifts in transcription factors that collaborate with TRIM24, an altered collection of TRIM24 target genes and/or a tissue-specific response to regulated p53 levels is unknown at this time. Clearly, additional mouse models, especially those with conditional over expression of Trim24, and manipulation of diet, along with mechanistic studies of functional domains and intersecting pathways, are needed to determine how epigenetic variables and tissue-specificity dictate metabolic reprogramming by TRIM24.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          TRIM24 links a noncanonical histone signature to breast cancer

          Recognition of modified histone species by distinct structural domains within “reader” proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here, we report that chromatin regulator TRIM24 functions as a reader of dual histone marks via tandem Plant Homeodomain (PHD) and Bromodomain (Bromo). The three-dimensional structure of TRIM24 PHD-Bromo revealed a single functional unit for combinatorial recognition of unmodified H3K4 (H3K4me0) and acetylated H3K23 (H3K23ac) within the same histone tail. TRIM24 binds chromatin and estrogen receptor to activate estrogen-dependent genes associated with cellular proliferation and tumor development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation via a noncanonical histone signature, establishing a new paradigm by which chromatin readers may influence cancer pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells.

            A common set of functional characteristics of cancer cells is that cancer cells consume a large amount of glucose, maintain high rate of glycolysis and convert a majority of glucose into lactic acid even in the presence of oxygen compared to that of normal cells (Warburg's Effects). In addition, cancer cells exhibit substantial alterations in several energy metabolism pathways including glucose transport, tricarboxylic acid (TCA) cycle, glutaminolysis, mitochondrial respiratory chain oxidative phosphorylation and pentose phosphate pathway (PPP). In the present work, we focused on reviewing the current knowledge about the dysregulation of the proteins/enzymes involved in the key regulatory steps of glucose transport, glycolysis, TCA cycle and glutaminolysis by several oncogenes including c-Myc and hypoxia inducible factor-1 (HIF-1) and tumor suppressor, p53, in cancer cells. The dysregulation of glucose transport and energy metabolism pathways by oncogenes and lost functions of the tumor suppressors have been implicated as important biomarkers for cancer detection and as valuable targets for the development of new anticancer therapies. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trim24 targets endogenous p53 for degradation.

              Numerous studies focus on the tumor suppressor p53 as a protector of genomic stability, mediator of cell cycle arrest and apoptosis, and target of mutation in 50% of all human cancers. The vast majority of information on p53, its protein-interaction partners and regulation, comes from studies of tumor-derived, cultured cells where p53 and its regulatory controls may be mutated or dysfunctional. To address regulation of endogenous p53 in normal cells, we created a mouse and stem cell model by knock-in (KI) of a tandem-affinity-purification (TAP) epitope at the endogenous Trp-53 locus. Mass spectrometry of TAP-purified p53-complexes from embryonic stem cells revealed Tripartite-motif protein 24 (Trim24), a previously unknown partner of p53. Mutation of TRIM24 homolog, bonus, in Drosophila led to apoptosis, which could be rescued by p53-depletion. These in vivo analyses establish TRIM24/bonus as a pathway that negatively regulates p53 in Drosophila. The Trim24-p53 link is evolutionarily conserved, as TRIM24 depletion in human breast cancer cells caused p53-dependent, spontaneous apoptosis. We found that Trim24 ubiquitylates and negatively regulates p53 levels, suggesting Trim24 as a therapeutic target to restore tumor suppression by p53.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                ImpactJ
                Aging (Albany NY)
                Impact Journals LLC
                1945-4589
                October 2015
                2 October 2015
                : 7
                : 10
                : 736-737
                Affiliations
                Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
                Author notes
                Correspondence: Michelle C. Barton mbarton@ 123456mdanderson.org
                Article
                4637195
                26454661
                9686574f-91b8-4890-a122-eca398315be5
                Copyright: © 2015 Thakkar et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 September 2015
                : 30 September 2015
                Categories
                Editorial

                Cell biology
                epigenetics,histone reader,breast cancer,hepatocellular carcinoma
                Cell biology
                epigenetics, histone reader, breast cancer, hepatocellular carcinoma

                Comments

                Comment on this article