0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effective inhibition of MYC-amplified group 3 medulloblastoma by FACT-targeted curaxin drug CBL0137

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medulloblastoma (MB) is the most common malignant pediatric brain tumor that can be categorized into four major molecular subgroups. Group 3 MB with MYC amplification (MYCamp-G3-MB) has been shown to be highly aggressive and exhibited worst prognosis, indicating the need for novel effective therapy most urgently. A few epigenetic targeted therapeutic strategies have recently been proven to effectively treat preclinical models of MYCamp-G3-MB, including BET inhibition, HDAC inhibition and SETD8 inhibition, unveiling a promising direction for further investigation. In this study, we carried out systemic bioinformatic analyses of public-available MB datasets as well as functional genomic screening datasets of primary MYCamp-G3-MB lines to search for other potential therapeutic targets within epigenetic modulators. We identified SSRP1, a subunit of histone-chaperone FACT complex, to be the top drug target candidate as it is highly cancer-dependent in whole-genome CRISPR-Cas9 screening across multiple MYCamp-G3-MB lines; significantly upregulated in MYCamp-G3-MB compared to normal cerebellum and most of the rest MB subtypes; its higher expression is correlated with worse prognosis; and it has a blood-brain-barrier penetrable targeted drug that has entered early phase human clinical trials already. Then we utilized RNA-interference approach to verify the cancer-dependency of SSRP1 in multiple MYCamp-G3-MB lines and further confirmed the therapeutic efficacy of FACT-targeted curaxin drug CBL0137 on treating preclinical models of MYCamp-G3-MB in vitro and in vivo, including an orthotopic intracranial xenograft model. Mechanistically, transcriptome analyses showed CBL0137 preferentially suppressed cell-cycle and DNA-repair related biological processes. Moreover, it selectively disrupted transcription of MYC and NEUROD1, two critical oncogenic transcription factors of MYCamp-G3-MB, via depleting FACT complex from their promoter regions. In summary, our study demonstrates FACT-targeted CBL0137 works effectively on treating MYCamp-G3-MB, presenting another promising epigenetic-targeted therapeutic strategy against the most devastating form of MB.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Selective inhibition of tumor oncogenes by disruption of super-enhancers.

          Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The whole-genome landscape of medulloblastoma subtypes

            Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma. Supplementary information The online version of this article (doi:10.1038/nature22973) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intertumoral Heterogeneity within Medulloblastoma Subgroups.

              While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.
                Bookmark

                Author and article information

                Contributors
                yujietang@shsmu.edu.cn
                majie@xinhuamed.com.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                2 December 2020
                2 December 2020
                December 2020
                : 11
                : 12
                : 1029
                Affiliations
                [1 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, Department of Pediatric Neurosurgery, Xinhua Hospital, , Shanghai Jiao Tong University School of Medicine, ; Shanghai, People’s Republic of China
                [2 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, , Shanghai Jiao Tong University School of Medicine, ; Shanghai, People’s Republic of China
                Author information
                http://orcid.org/0000-0001-7647-5780
                Article
                3201
                10.1038/s41419-020-03201-6
                7710710
                33268769
                966d272e-4ac8-4c96-9c7e-612cde4c2119
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 February 2020
                : 15 August 2020
                : 25 August 2020
                Funding
                Funded by: Shanghai Xin Hua Hospital (JZPI201701)
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Cell biology
                target validation,cns cancer
                Cell biology
                target validation, cns cancer

                Comments

                Comment on this article