14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Children autism spectrum disorder and gut microbiota: A bibliometric and visual analysis from 2000 to 2023

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) has evolved from a narrow and rare childhood-onset disorder to a widely publicized and researched lifelong disease recognized as common and significantly heterogeneous. Researchers have suggested that gastrointestinal symptoms in ASD may be a manifestation of an underlying inflammatory process. However, there is a lack of bibliometric analysis of ASD and gut microbiota in children. Accordingly, this study conducts a bibliometric analysis of ASD and gut microbiota in children from 2000 to 2023, explores the current status and cutting-edge trends in the field of ASD and gut microbiota in children, and identifies new directions for future research. The literature on ASD and gut microbiota in children was screened using the Web of Science Core Collection from 2000 to 2023. Annual publications, countries, institutions, authors, journals, keywords, and references were visualized and analyzed using CiteSpace 5.8. R3 and VOSviewer1.6.18. This study included 1071 publications. Since the beginning of 2011, the overall number of articles shows an upward trend. The most productive country and institution are the United States and the University of California system, respectively. The most frequently cited author is Kang Dae-Wook, with 790 citations, who has contributed significantly to this field. Timothy Dinan is the most prolific author, with 34 articles. The journal with the most published articles on this topic is Nutrients, whereas PLOS One is the most cited journal. The most used keyword is “gut microbiota,” and the reference for the highest outbreak intensity is Hsiao. The research hotspots and trends predicted in this study provide a reference for further in-depth research in this field.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Software survey: VOSviewer, a computer program for bibliometric mapping

          We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Microbiota-Gut-Brain Axis

            The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

              Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Medicine (Baltimore)
                Medicine (Baltimore)
                MD
                Medicine
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0025-7974
                1536-5964
                29 December 2023
                29 December 2023
                : 102
                : 52
                : e36794
                Affiliations
                [a ] Hebei University of Chinese Medicine, Shijiazhuang, China
                [b ] Henan University of Chinese Medicine, Zhengzhou, China
                [c ] The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
                Author notes
                [* ]Correspondence: Bing-Xiang Ma, No. 19, Renmin Road, Zhengzhou, Henan Province, 45000, China (e-mail: mbx1963@ 123456126.com ).
                Author information
                https://orcid.org/0009-0006-2889-903X
                Article
                00021
                10.1097/MD.0000000000036794
                10754604
                966c744e-a51e-4001-a96c-43d33bbd433b
                Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

                History
                : 10 October 2023
                : 01 December 2023
                : 05 December 2023
                Categories
                6200
                Research Article
                Observational Study
                Custom metadata
                TRUE

                autism,autism spectrum disorder,bibliometric analysis,gut microbiota,visual analysis

                Comments

                Comment on this article