6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An efficient bimetallic ZnO/Co@N-CNT catalyst was designed for selective hydrogenation and hydrodeoxygenation of lignin and its derived components in water.

          Abstract

          A catalyst comprising highly-efficient and magnetically-separable bimetallic ZnO and Co nanoparticles (NPs) deposited on N-doped carbon nanotubes (ZnO/Co@N-CNTs) was synthesized by the direct calcination of the bimetallic Zn/Co zeolitic imidazolate framework (Zn/Co-ZIF) for the effective hydrogenation (HD) and hydrodeoxygenation (HD) of lignin and its derived species. During the calcination of Zn/Co-ZIF, Zn was dislocated from the framework to the particle surface to form amorphous ZnO NPs and metallic Co NPs, which activated the growth of the N-CNTs. Because of the highly Lewis acidic amorphous ZnO, high HD/HDO ability of metallic Co NPs, and high wettability of the N-CNT, an almost complete conversion of vanillin into its corresponding deoxygenated species, creosol, was achieved in an aqueous medium without the production of byproducts under mild reaction conditions (150 °C, 0.7 MPa H 2, a reaction time of 2 h). When kraft lignin and bio-oil derived from concentrated strong acid hydrolysis lignin were converted over ZnO/Co@N-CNTs, high degrees of deoxygenation of 74.2% and 34.4%, respectively, could be achieved at 350 °C, 5.0 MPa H 2, and a reaction time of 6 h in water. A detailed chemical composition analysis of the deoxygenated bio-oil revealed that cyclohexanone and its alkyl group-substituted derivatives were the major species. To gain insight into the HD/HDO mechanisms, various types of lignin-derived monomers (syringaldehyde, acetovanillone, acetosyringone, 2-phenoxy-1-phenylethanol, cinnamaldehyde, isoeugenol) and holocellulose-derived monomers (furfural and 5-hydroxymethyl furfural), different types of catalysts, and various reaction parameters were tested. The mild reaction conditions, use of a non-noble metal catalyst, and use of water as the solvent make it possible to develop a cost-effective, easy to scale up, and environmental-benign process for biofuel and biochemical production.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Lignin valorization: improving lignin processing in the biorefinery.

          Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here, we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading.

            In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bright Side of Lignin Depolymerization: Toward New Platform Chemicals

              Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin-based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin-derived platform chemicals.
                Bookmark

                Author and article information

                Contributors
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                March 4 2019
                2019
                : 21
                : 5
                : 1021-1042
                Affiliations
                [1 ]SKKU Advanced Institute of Nanotechnology (SAINT)
                [2 ]Sungkyunkwan University
                [3 ]Gyeong Gi-Do
                [4 ]Republic of Korea
                [5 ]School of Mechanical Engineering
                [6 ]Institute of Advanced Composite Materials
                [7 ]Korea Institute of Science and Technology
                [8 ]Jeonranbuk-do
                Article
                10.1039/C8GC03623C
                960c4fb5-4a45-4b79-bc57-831a31d541ad
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article