69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TRAF6 expression is enhanced during muscle atrophy and induces activation of signal transduction cascades that promote muscle wasting.

          Abstract

          Skeletal muscle wasting is a major human morbidity, and contributes to mortality in a variety of clinical settings, including denervation and cancer cachexia. In this study, we demonstrate that the expression level and autoubiquitination of tumor necrosis factor (α) receptor adaptor protein 6 (TRAF6), a protein involved in receptor-mediated activation of several signaling pathways, is enhanced in skeletal muscle during atrophy. Skeletal muscle–restricted depletion of TRAF6 rescues myofibril degradation and preserves muscle fiber size and strength upon denervation. TRAF6 mediates the activation of JNK1/2, p38 mitogen-activated protein kinase, adenosine monophosphate–activated protein kinase, and nuclear factor κB, and induces the expression of muscle-specific E3 ubiquitin ligases and autophagy-related molecules in skeletal muscle upon denervation. Inhibition of TRAF6 also preserves the orderly pattern of intermyofibrillar and subsarcolemmal mitochondria in denervated muscle. Moreover, depletion of TRAF6 prevents cancer cachexia in an experimental mouse model. This study unveils a novel mechanism of skeletal muscle atrophy and suggests that TRAF6 is an important therapeutic target to prevent skeletal muscle wasting.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.

          TRAF6 is a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. We have purified a heterodimeric protein complex that links TRAF6 to IKK activation. Peptide mass fingerprinting analysis reveals that this complex is composed of the ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A. We find that TRAF6, a RING domain protein, functions together with Ubc13/Uev1A to catalyze the synthesis of unique polyubiquitin chains linked through lysine-63 (K63) of ubiquitin. Blockade of this polyubiquitin chain synthesis, but not inhibition of the proteasome, prevents the activation of IKK by TRAF6. These results unveil a new regulatory function for ubiquitin, in which IKK is activated through the assembly of K63-linked polyubiquitin chains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IKKbeta/NF-kappaB activation causes severe muscle wasting in mice.

            Muscle wasting accompanies aging and pathological conditions ranging from cancer, cachexia, and diabetes to denervation and immobilization. We show that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia. In contrast, no overt phenotype was seen upon muscle-specific inhibition of NF-kappaB through expression of IkappaBalpha superrepressor (MISR). Muscle loss was due to accelerated protein breakdown through ubiquitin-dependent proteolysis. Expression of the E3 ligase MuRF1, a mediator of muscle atrophy, was increased in MIKK mice. Pharmacological or genetic inhibition of the IKKbeta/NF-kappaB/MuRF1 pathway reversed muscle atrophy. Denervation- and tumor-induced muscle loss were substantially reduced and survival rates improved by NF-kappaB inhibition in MISR mice, consistent with a critical role for NF-kappaB in the pathology of muscle wasting and establishing it as an important clinical target for the treatment of muscle atrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ubiquitin signalling in the NF-kappaB pathway.

              The transcription factor NF-kappaB (nuclear factor kappa enhancer binding protein) controls many processes, including immunity, inflammation and apoptosis. Ubiquitination regulates at least three steps in the NF-kappaB pathway: degradation of IkappaB (inhibitor of NF-kappaB), processing of NF-kappaB precursors, and activation of the IkappaB kinase (IKK). Recent studies have revealed several enzymes involved in the ubiquitination and deubiquitination of signalling proteins that mediate IKK activation through a degradation-independent mechanism.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                27 December 2010
                : 191
                : 7
                : 1395-1411
                Affiliations
                [1 ]Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202
                [2 ]Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
                [3 ]Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
                Author notes
                Correspondence to Ashok Kumar: ashok.kumar@ 123456louisville.edu
                Article
                201006098
                10.1083/jcb.201006098
                3010064
                21187332
                95fc8738-449d-478e-9da3-0de63fb6843a
                © 2010 Paul et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 16 June 2010
                : 19 November 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article