301
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          First released in 2009, MetaboAnalyst ( www.metaboanalyst.ca) was a relatively simple web server designed to facilitate metabolomic data processing and statistical analysis. With continuing advances in metabolomics along with constant user feedback, it became clear that a substantial upgrade to the original server was necessary. MetaboAnalyst 2.0, which is the successor to MetaboAnalyst, represents just such an upgrade. MetaboAnalyst 2.0 now contains dozens of new features and functions including new procedures for data filtering, data editing and data normalization. It also supports multi-group data analysis, two-factor analysis as well as time-series data analysis. These new functions have also been supplemented with: (i) a quality-control module that allows users to evaluate their data quality before conducting any analysis, (ii) a functional enrichment analysis module that allows users to identify biologically meaningful patterns using metabolite set enrichment analysis and (iii) a metabolic pathway analysis module that allows users to perform pathway analysis and visualization for 15 different model organisms. In developing MetaboAnalyst 2.0 we have also substantially improved its graphical presentation tools. All images are now generated using anti-aliasing and are available over a range of resolutions, sizes and formats (PNG, TIFF, PDF, PostScript, or SVG). To improve its performance, MetaboAnalyst 2.0 is now hosted on a much more powerful server with substantially modified code to take advantage the server’s multi-core CPUs for computationally intensive tasks. MetaboAnalyst 2.0 also maintains a collection of 50 or more FAQs and more than a dozen tutorials compiled from user queries and requests. A downloadable version of MetaboAnalyst 2.0, along detailed instructions for local installation is now available as well.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MetaboAnalyst: a web server for metabolomic data analysis and interpretation

          Metabolomics is a newly emerging field of ‘omics’ research that is concerned with characterizing large numbers of metabolites using NMR, chromatography and mass spectrometry. It is frequently used in biomarker identification and the metabolic profiling of cells, tissues or organisms. The data processing challenges in metabolomics are quite unique and often require specialized (or expensive) data analysis software and a detailed knowledge of cheminformatics, bioinformatics and statistics. In an effort to simplify metabolomic data analysis while at the same time improving user accessibility, we have developed a freely accessible, easy-to-use web server for metabolomic data analysis called MetaboAnalyst. Fundamentally, MetaboAnalyst is a web-based metabolomic data processing tool not unlike many of today's web-based microarray analysis packages. It accepts a variety of input data (NMR peak lists, binned spectra, MS peak lists, compound/concentration data) in a wide variety of formats. It also offers a number of options for metabolomic data processing, data normalization, multivariate statistical analysis, graphing, metabolite identification and pathway mapping. In particular, MetaboAnalyst supports such techniques as: fold change analysis, t-tests, PCA, PLS-DA, hierarchical clustering and a number of more sophisticated statistical or machine learning methods. It also employs a large library of reference spectra to facilitate compound identification from most kinds of input spectra. MetaboAnalyst guides users through a step-by-step analysis pipeline using a variety of menus, information hyperlinks and check boxes. Upon completion, the server generates a detailed report describing each method used, embedded with graphical and tabular outputs. MetaboAnalyst is capable of handling most kinds of metabolomic data and was designed to perform most of the common kinds of metabolomic data analyses. MetaboAnalyst is accessible at http://www.metaboanalyst.ca
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            HMDB: a knowledgebase for the human metabolome

            The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent filtering increases detection power for high-throughput experiments.

              With high-dimensional data, variable-by-variable statistical testing is often used to select variables whose behavior differs across conditions. Such an approach requires adjustment for multiple testing, which can result in low statistical power. A two-stage approach that first filters variables by a criterion independent of the test statistic, and then only tests variables which pass the filter, can provide higher power. We show that use of some filter/test statistics pairs presented in the literature may, however, lead to loss of type I error control. We describe other pairs which avoid this problem. In an application to microarray data, we found that gene-by-gene filtering by overall variance followed by a t-test increased the number of discoveries by 50%. We also show that this particular statistic pair induces a lower bound on fold-change among the set of discoveries. Independent filtering-using filter/test pairs that are independent under the null hypothesis but correlated under the alternative-is a general approach that can substantially increase the efficiency of experiments.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                July 2012
                July 2012
                2 May 2012
                2 May 2012
                : 40
                : Web Server issue
                : W127-W133
                Affiliations
                1Department of Biological Sciences, 2Department of Computing Science, 3Department of Medicine and 4National Research Council, National Institute for Nanotechnology (NINT), Edmonton, AB, Canada T6G 2E8
                Author notes
                *To whom correspondence should be addressed. Tel: +1 780 492 0383; Fax: +1 780 492 5305; Email: david.wishart@ 123456ualberta.ca
                Article
                gks374
                10.1093/nar/gks374
                3394314
                22553367
                95c46548-d526-456f-8059-244c4b3996ba
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 February 2012
                : 3 April 2012
                : 12 April 2012
                Page count
                Pages: 7
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article