Transcriptome wide association studies (TWAS) can be used as a powerful method to identify and interpret the underlying biological mechanisms behind GWAS by mapping gene expression levels with phenotypes. In TWAS, gene expression is often imputed from individual-level genotypes of regulatory variants identified from external resources, such as Genotype-Tissue Expression (GTEx) Project. In this setting, a straightforward approach to impute expression levels of a specific tissue is to use the model trained from the same tissue type. When multiple tissues are available for the same subjects, it has been demonstrated that training imputation models from multiple tissue types improves the accuracy because of shared eQTLs between the tissues and increase in effective sample size. However, existing joint-tissue methods require access of genotype and expression data across all tissues. Moreover, they cannot leverage the abundance of various expression datasets across various tissues for non-overlapping individuals. Here, we explore the optimal way to combine imputed levels across training models from multiple tissues and datasets in a flexible manner using summary-level data. Our proposed method (SWAM) combines arbitrary number of transcriptome imputation models to linearly optimize the imputation accuracy given a target tissue. By integrating models across tissues and/or individuals, SWAM can improve the accuracy of transcriptome imputation or to improve power to TWAS while only requiring individual-level data from a single reference cohort. To evaluate the accuracy of SWAM, we combined 49 tissue-specific gene expression imputation models from the GTEx Project as well as from a large eQTL study of Depression Susceptibility Genes and Networks (DGN) Project and tested imputation accuracy in GEUVADIS lymphoblastoid cell lines samples. We also extend our meta-imputation method to meta-TWAS to leverage multiple tissues in TWAS analysis with summary-level statistics. Our results capitalize on the importance of integrating multiple tissues to unravel regulatory impacts of genetic variants on complex traits.
The gene expression levels within a cell are affected by various factors, including DNA variation, cell type, cellular microenvironment, disease status, and other environmental factors surrounding the individual. The genetic component of gene expression is known to explain a substantial fraction of transcriptional variation among individuals and can be imputed from genotypes in a tissue-specific manner, by training from population-scale transcriptomic profiles designed to identify expression quantitative loci (eQTLs). Imputing gene expression levels is shown to help understand the genetic basis of human disease through Transcriptome-wide association analysis (TWAS) and Mendelian Randomization (MR). However, it has been unclear how to integrate multiple imputation models trained from individual datasets to maximize their accuracy without having to access individual genotypes and expression levels that are often protected for privacy concerns. We developed SWAM (Smartly Weighted Averaging across Multiple datasets), a meta-imputation framework which can accurately impute gene expression levels from genotypes by integrating multiple imputation models without requiring individual-level data. Our method examines the similarity or differences between resources and borrowing information most relevant to the tissue of interest. We demonstrate that SWAM outperforms existing single-tissue and multi-tissue imputation models and continue to increase accuracy when integrating additional imputation models.