16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The APETALA2-like genes form a large multi-gene family of transcription factors which play an important role during the plant life cycle, being key regulators of many developmental processes. Many studies in Arabidopsis have revealed that the APETALA2 ( AP2) gene is implicated in the establishment of floral meristem and floral organ identity as well as temporal and spatial regulation of flower homeotic gene expression.

          Results

          In this work, we have cloned and characterised the AP2-like gene from accessions of Hordeum chilense and Hordeum vulgare, wild and domesticated barley, respectively, and compared with other AP2 homoeologous genes, including the Q gene in wheat. The Hordeum AP2-like genes contain two plant-specific DNA binding motifs called AP2 domains, as does the Q gene of wheat. We confirm that the H. chilense AP2-like gene is located on chromosome 5H ch. Patterns of expression of the AP2-like genes were examined in floral organs and other tissues in barley, wheat and in tritordeum amphiploids (barley × wheat hybrids). In tritordeum amphiploids, the level of transcription of the barley AP2-like gene was lower than in its barley parental and the chromosome substitutions 1D/1H ch and 2D/2H ch were seen to modify AP2 gene expression levels.

          Conclusion

          The results are of interest in order to understand the role of the AP2-like gene in the spike morphology of barley and wheat, and to understand the regulation of this gene in the amphiploids obtained from barley-wheat crossing. This information may have application in cereal breeding programs to up- or down-regulate the expression of AP2-like genes in order to modify spike characteristics and to obtain free-threshing plants.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development.

          X. Chen (2004)
          Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, I show that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Processing of gene expression data generated by quantitative real-time RT-PCR.

            Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genes directing flower development in Arabidopsis.

              We describe the effects of four recessive homeotic mutations that specifically disrupt the development of flowers in Arabidopsis thaliana. Each of the recessive mutations affects the outcome of organ development, but not the location of organ primordia. Homeotic transformations observed are as follows. In agamous-1, stamens to petals; in apetala2-1, sepals to leaves and petals to staminoid petals; in apetala3-1, petals to sepals and stamens to carpels; in pistillata-1, petals to sepals. In addition, two of these mutations (ap2-1 and pi-1) result in loss of organs, and ag-1 causes the cells that would ordinarily form the gynoecium to differentiate as a flower. Two of the mutations are temperature-sensitive. Temperature shift experiments indicate that the wild-type AP2 gene product acts at the time of primordium initiation; the AP3 product is active later. It seems that the wild-type alleles of these four genes allow cells to determine their place in the developing flower and thus to differentiate appropriately. We propose that these genes may be involved in setting up or responding to concentric, overlapping fields within the flower primordium.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2009
                29 May 2009
                : 9
                : 66
                Affiliations
                [1 ]Departamento de Mejora Genética Vegetal. Instituto de Agricultura Sostenible, CSIC, 14080-Córdoba, Spain
                Article
                1471-2229-9-66
                10.1186/1471-2229-9-66
                2700811
                19480686
                95b5040a-fb83-40c8-ab80-1326c98a5148
                Copyright © 2009 Gil-Humanes et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 February 2009
                : 29 May 2009
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article