30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune system and melanoma biology: a balance between immunosurveillance and immune escape

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion.

          Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of “targeted therapies” on tumor microenvironment for combination strategies.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of somatic mutation in human cancer genomes.

          Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of type I interferon responses.

            Type I interferons (IFNs) activate intracellular antimicrobial programmes and influence the development of innate and adaptive immune responses. Canonical type I IFN signalling activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs). Host, pathogen and environmental factors regulate the responses of cells to this signalling pathway and thus calibrate host defences while limiting tissue damage and preventing autoimmunity. Here, we summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation. These regulatory mechanisms determine the biological outcomes of type I IFN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.

              Lymphocytes were originally thought to form the basis of a 'cancer immunosurveillance' process that protects immunocompetent hosts against primary tumour development, but this idea was largely abandoned when no differences in primary tumour development were found between athymic nude mice and syngeneic wild-type mice. However, subsequent observations that nude mice do not completely lack functional T cells and that two components of the immune system-IFNgamma and perforin-help to prevent tumour formation in mice have led to renewed interest in a tumour-suppressor role for the immune response. Here we show that lymphocytes and IFNgamma collaborate to protect against development of carcinogen-induced sarcomas and spontaneous epithelial carcinomas and also to select for tumour cells with reduced immunogenicity. The immune response thus functions as an effective extrinsic tumour-suppressor system. However, this process also leads to the immunoselection of tumour cells that are more capable of surviving in an immunocompetent host, which explains the apparent paradox of tumour formation in immunologically intact individuals.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                1 December 2017
                31 October 2017
                : 8
                : 62
                : 106132-106142
                Affiliations
                1 Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
                Author notes
                Correspondence to: Anna Passarelli, passarellian@ 123456libero.it
                Article
                22190
                10.18632/oncotarget.22190
                5739707
                29285320
                95af282c-922b-46e9-9075-213cc227af4c
                Copyright: © 2017 Passarelli et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 26 May 2017
                : 21 September 2017
                Categories
                Review

                Oncology & Radiotherapy
                melanoma,immune system,immunogenicity,immunoediting,immune escape
                Oncology & Radiotherapy
                melanoma, immune system, immunogenicity, immunoediting, immune escape

                Comments

                Comment on this article