1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knowledge-based automatic plan optimization for left-sided whole breast tomotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Purpose

          Tomotherapy may deliver high-quality whole breast irradiation at static angles. The aim of this study was to implement Knowledge-Based (KB) automatic planning for left-sided whole breast using this modality.

          Materials/Methods

          Virtual volumetric plans were associated to the dose distributions of 69 Tomotherapy (TT) clinical plans of previously treated patients, aiming to train a KB-model using a commercial tool completely implemented in our treatment planning system. An individually optimized template based on the resulting KB-model was generated for automatic plan optimization. Thirty patients of the training set and ten new patients were considered for internal/external validation. Fully-automatic plans (KB-TT) were generated and compared using the same geometry/number of fields of the corresponding clinical plans.

          Results

          KB-TT plans were successfully generated in 26/30 and 10/10 patients of the internal/external validation sets; for 4 patients whose original plans used only two fields, the manual insertion of one/two fields before running the automatic template was sufficient to obtain acceptable plans. Concerning internal validation, planning target volume V 95%/D 1%/dose distribution standard deviation improved by 0.9%/0.4Gy/0.2Gy (p < 0.05) against clinical plans; Organs at risk mean doses were also slightly improved (p < 0.05) by 0.07/0.4/0.2/0.01 Gy for left lung/heart/right breast/right lung respectively. Similarly satisfactory results were replicated in the external validation set. The resulting treatment duration was 8 ± 1 min, consistent with our clinical experience. The active planner time per patient was 5–10 minutes.

          Conclusion

          Automatic TT left-sided breast KB-plans are comparable to or slightly better than clinical plans and can be obtained with limited planner time. The approach is currently under clinical implementation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials

          Summary Background After breast-conserving surgery, radiotherapy reduces recurrence and breast cancer death, but it may do so more for some groups of women than for others. We describe the absolute magnitude of these reductions according to various prognostic and other patient characteristics, and relate the absolute reduction in 15-year risk of breast cancer death to the absolute reduction in 10-year recurrence risk. Methods We undertook a meta-analysis of individual patient data for 10 801 women in 17 randomised trials of radiotherapy versus no radiotherapy after breast-conserving surgery, 8337 of whom had pathologically confirmed node-negative (pN0) or node-positive (pN+) disease. Findings Overall, radiotherapy reduced the 10-year risk of any (ie, locoregional or distant) first recurrence from 35·0% to 19·3% (absolute reduction 15·7%, 95% CI 13·7–17·7, 2p<0·00001) and reduced the 15-year risk of breast cancer death from 25·2% to 21·4% (absolute reduction 3·8%, 1·6–6·0, 2p=0·00005). In women with pN0 disease (n=7287), radiotherapy reduced these risks from 31·0% to 15·6% (absolute recurrence reduction 15·4%, 13·2–17·6, 2p<0·00001) and from 20·5% to 17·2% (absolute mortality reduction 3·3%, 0·8–5·8, 2p=0·005), respectively. In these women with pN0 disease, the absolute recurrence reduction varied according to age, grade, oestrogen-receptor status, tamoxifen use, and extent of surgery, and these characteristics were used to predict large (≥20%), intermediate (10–19%), or lower (<10%) absolute reductions in the 10-year recurrence risk. Absolute reductions in 15-year risk of breast cancer death in these three prediction categories were 7·8% (95% CI 3·1–12·5), 1·1% (–2·0 to 4·2), and 0·1% (–7·5 to 7·7) respectively (trend in absolute mortality reduction 2p=0·03). In the few women with pN+ disease (n=1050), radiotherapy reduced the 10-year recurrence risk from 63·7% to 42·5% (absolute reduction 21·2%, 95% CI 14·5–27·9, 2p<0·00001) and the 15-year risk of breast cancer death from 51·3% to 42·8% (absolute reduction 8·5%, 1·8–15·2, 2p=0·01). Overall, about one breast cancer death was avoided by year 15 for every four recurrences avoided by year 10, and the mortality reduction did not differ significantly from this overall relationship in any of the three prediction categories for pN0 disease or for pN+ disease. Interpretation After breast-conserving surgery, radiotherapy to the conserved breast halves the rate at which the disease recurs and reduces the breast cancer death rate by about a sixth. These proportional benefits vary little between different groups of women. By contrast, the absolute benefits from radiotherapy vary substantially according to the characteristics of the patient and they can be predicted at the time when treatment decisions need to be made. Funding Cancer Research UK, British Heart Foundation, and UK Medical Research Council.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional Nodal Irradiation in Early-Stage Breast Cancer.

            Most women with breast cancer who undergo breast-conserving surgery receive whole-breast irradiation. We examined whether the addition of regional nodal irradiation to whole-breast irradiation improved outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial

              Summary Background We aimed to identify a five-fraction schedule of adjuvant radiotherapy (radiation therapy) delivered in 1 week that is non-inferior in terms of local cancer control and is as safe as an international standard 15-fraction regimen after primary surgery for early breast cancer. Here, we present 5-year results of the FAST-Forward trial. Methods FAST-Forward is a multicentre, phase 3, randomised, non-inferiority trial done at 97 hospitals (47 radiotherapy centres and 50 referring hospitals) in the UK. Patients aged at least 18 years with invasive carcinoma of the breast (pT1–3, pN0–1, M0) after breast conservation surgery or mastectomy were eligible. We randomly allocated patients to either 40 Gy in 15 fractions (over 3 weeks), 27 Gy in five fractions (over 1 week), or 26 Gy in five fractions (over 1 week) to the whole breast or chest wall. Allocation was not masked because of the nature of the intervention. The primary endpoint was ipsilateral breast tumour relapse; assuming a 2% 5-year incidence for 40 Gy, non-inferiority was predefined as ≤1·6% excess for five-fraction schedules (critical hazard ratio [HR] of 1·81). Normal tissue effects were assessed by clinicians, patients, and from photographs. This trial is registered at isrctn.com, ISRCTN19906132. Findings Between Nov 24, 2011, and June 19, 2014, we recruited and obtained consent from 4096 patients from 97 UK centres, of whom 1361 were assigned to the 40 Gy schedule, 1367 to the 27 Gy schedule, and 1368 to the 26 Gy schedule. At a median follow-up of 71·5 months (IQR 71·3 to 71·7), the primary endpoint event occurred in 79 patients (31 in the 40 Gy group, 27 in the 27 Gy group, and 21 in the 26 Gy group); HRs versus 40 Gy in 15 fractions were 0·86 (95% CI 0·51 to 1·44) for 27 Gy in five fractions and 0·67 (0·38 to 1·16) for 26 Gy in five fractions. 5-year incidence of ipsilateral breast tumour relapse after 40 Gy was 2·1% (1·4 to 3·1); estimated absolute differences versus 40 Gy in 15 fractions were −0·3% (−1·0 to 0·9) for 27 Gy in five fractions (probability of incorrectly accepting an inferior five-fraction schedule: p=0·0022 vs 40 Gy in 15 fractions) and −0·7% (−1·3 to 0·3) for 26 Gy in five fractions (p=0·00019 vs 40 Gy in 15 fractions). At 5 years, any moderate or marked clinician-assessed normal tissue effects in the breast or chest wall was reported for 98 of 986 (9·9%) 40 Gy patients, 155 (15·4%) of 1005 27 Gy patients, and 121 of 1020 (11·9%) 26 Gy patients. Across all clinician assessments from 1–5 years, odds ratios versus 40 Gy in 15 fractions were 1·55 (95% CI 1·32 to 1·83, p<0·0001) for 27 Gy in five fractions and 1·12 (0·94 to 1·34, p=0·20) for 26 Gy in five fractions. Patient and photographic assessments showed higher normal tissue effect risk for 27 Gy versus 40 Gy but not for 26 Gy versus 40 Gy. Interpretation 26 Gy in five fractions over 1 week is non-inferior to the standard of 40 Gy in 15 fractions over 3 weeks for local tumour control, and is as safe in terms of normal tissue effects up to 5 years for patients prescribed adjuvant local radiotherapy after primary surgery for early-stage breast cancer. Funding National Institute for Health Research Health Technology Assessment Programme.
                Bookmark

                Author and article information

                Contributors
                Journal
                Phys Imaging Radiat Oncol
                Phys Imaging Radiat Oncol
                Physics and Imaging in Radiation Oncology
                Elsevier
                2405-6316
                23 June 2022
                July 2022
                23 June 2022
                : 23
                : 54-59
                Affiliations
                [a ]Medical Physics, San Raffaele Scientific Institute, Milano, Italy
                [b ]Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
                [c ]Vita-Salute San Raffaele University, Milano, Italy
                Author notes
                [* ]Corresponding author at: Medical Physics Dept, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy. fiorino.claudio@ 123456hsr.it
                Article
                S2405-6316(22)00057-4
                10.1016/j.phro.2022.06.009
                9256826
                35814259
                959dc007-38bc-4911-821b-64f8bd2d453b
                © 2022 Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 December 2021
                : 17 June 2022
                : 20 June 2022
                Categories
                Original Research Article

                radiotherapy planning optimization,tomotherapy,breast cancer,knowledge-based models,ai in radiation oncology

                Comments

                Comment on this article