86
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.

          Related collections

          Most cited references249

          • Record: found
          • Abstract: found
          • Article: not found

          TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.

          We describe de novo generation of IL-17-producing T cells from naive CD4 T cells, induced in cocultures of naive CD4 T cells and naturally occurring CD4+ CD25+ T cells (Treg) in the presence of TLR3, TLR4, or TLR9 stimuli. Treg can be substituted by TGFbeta1, which, together with the proinflammatory cytokine IL-6, supports the differentiation of IL-17-producing T cells, a process that is amplified by IL-1beta and TNFalpha. We could not detect a role for IL-23 in the differentiation of IL-17-producing T cells but confirmed its importance for their survival and expansion. Transcription factors GATA-3 and T-bet, as well as its target Hlx, are absent in IL-17-producing T cells, and they do not express the negative regulator for TGFbeta signaling, Smad7. Our data indicate that, in the presence of IL-6, TGFbeta1 subverts Th1 and Th2 differentiation for the generation of IL-17-producing T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokine signaling via the CXCR2 receptor reinforces senescence.

            Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.

              Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                May 2014
                14 May 2014
                : 15
                : 5
                : 8591-8638
                Affiliations
                [1 ]Department of Gastroenterology and Hepatology, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia; E-Mails: william.peverill@ 123456health.qld.gov.au (W.P.); lawrie.powell@ 123456qimrberghofer.edu.au (L.W.P.)
                [2 ]The University of Queensland Centre for Clinical Research, Brisbane 4029, Australia
                [3 ]QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
                [4 ]School of Medicine, the University of Queensland, Brisbane 4006, Australia
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: richard.skoien@ 123456health.qld.gov.au ; Tel.: +61-7-3646-2659; Fax: +61-7-3646-7283.
                Article
                ijms-15-08591
                10.3390/ijms15058591
                4057750
                24830559
                959bf72b-40ec-4ccf-a7cd-22df105c9c70
                © 2014 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 02 February 2014
                : 20 March 2014
                : 17 April 2014
                Categories
                Review

                Molecular biology
                non-alcoholic fatty liver disease,non-alcoholic steatohepatitis,pathogenesis,fibrosis,lipotoxicity,inflammation,immune response,treatment

                Comments

                Comment on this article