15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.

          Related collections

          Most cited references208

          • Record: found
          • Abstract: found
          • Article: not found

          Many ceramides.

          Intensive research over the past 2 decades has implicated ceramide in the regulation of several cell responses. However, emerging evidence points to dramatic complexities in ceramide metabolism and structure that defy the prevailing unifying hypothesis on ceramide function that is based on the understanding of ceramide as a single entity. Here, we develop the concept that "ceramide" constitutes a family of closely related molecules, subject to metabolism by >28 enzymes and with >200 structurally distinct mammalian ceramides distinguished by specific structural modifications. These ceramides are synthesized in a combinatorial fashion with distinct enzymes responsible for the specific modifications. These multiple pathways of ceramide generation led to the hypothesis that individual ceramide molecular species are regulated by specific biochemical pathways in distinct subcellular compartments and execute distinct functions. In this minireview, we describe the "many ceramides" paradigm, along with the rationale, supporting evidence, and implications for our understanding of bioactive sphingolipids and approaches for unraveling these pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioactive sphingolipids: metabolism and function.

            Sphingolipids (SLs) are essential constituents of eukaryotic cells. Besides playing structural roles in cellular membranes, some metabolites, including ceramide, sphingosine, and sphingosine-1-phosphate, have drawn attention as bioactive signaling molecules involved in the regulation of cell growth, differentiation, senescence, and apoptosis. Understanding the many cell regulatory functions of SL metabolites requires an advanced knowledge of how and where in the cell they are generated, converted, or degraded. This review will provide a short overview of the metabolism, localization, and compartmentalization of SLs. Also, a discussion on bioactive members of the SL family and inducers of SL enzymes that lead to ceramide generation will be presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism.

              The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca(2+) transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [(3)H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                05 March 2015
                March 2015
                : 16
                : 3
                : 5076-5124
                Affiliations
                Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan; E-Mail: nueda@ 123456mattohp.com ; Tel.: +81-76-275-2222; Fax: +81-76-274-5974
                Article
                ijms-16-05076
                10.3390/ijms16035076
                4394466
                25751724
                95907a98-941b-43ef-b5fe-12ab2eca7385
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 November 2014
                : 12 February 2015
                Categories
                Review

                Molecular biology
                bcl-2 family proteins,caspases,ceramide,growth factors,mitochondria,mitogen-activated protein kinases,reactive oxygen species,renal tubular cells,sphingosine-1 phosphate

                Comments

                Comment on this article