17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DNA Barcoding identification of commercialized seafood in South Brazil: A governmental regulatory forensic program

      , , ,
      Food Control
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

          A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even in low technology laboratories. The amount of tissue required by this method is approximately 50-100 mg. The quantity and the quality of the DNA extracted by this method is high enough to perform hundreds of PCR-based reactions and also to be used in other DNA manipulation techniques such as restriction digestion, Southern blot and cloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

            Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence ( 2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic divergences suggestive of reproductive isolation and putative cryptic speciation in some species (23 candidates for new species). Finally, our study constituted an important contribution to the international Barcoding of Life (iBOL.org) project, providing barcode sequences for use in identification of these species by experts and non-experts, and allowing them to be available for use in other applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DNA barcoding detects market substitution in North American seafood

                Bookmark

                Author and article information

                Journal
                Food Control
                Food Control
                Elsevier BV
                09567135
                April 2015
                April 2015
                : 50
                :
                : 784-788
                Article
                10.1016/j.foodcont.2014.10.025
                95760fc1-768f-4d05-b2bf-1eba98f455a5
                © 2015
                History

                Comments

                Comment on this article