2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetics of 46,XY gonadal dysgenesis

      , ,
      Best Practice & Research Clinical Endocrinology & Metabolism
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer.

          The mammalian Y chromosome acts as a dominant male determinant as a result of the action of a single gene, Sry, whose role in sex determination is to initiate testis rather than ovary development from early bipotential gonads. It does so by triggering the differentiation of Sertoli cells from supporting cell precursors, which would otherwise give follicle cells. The related autosomal gene Sox9 is also known from loss-of-function mutations in mice and humans to be essential for Sertoli cell differentiation; moreover, its abnormal expression in an XX gonad can lead to male development in the absence of Sry. These genetic data, together with the finding that Sox9 is upregulated in Sertoli cell precursors just after SRY expression begins, has led to the proposal that Sox9 could be directly regulated by SRY. However, the mechanism by which SRY action might affect Sox9 expression was not understood. Here we show that SRY binds to multiple elements within a Sox9 gonad-specific enhancer in mice, and that it does so along with steroidogenic factor 1 (SF1, encoded by the gene Nr5a1 (Sf1)), an orphan nuclear receptor. Mutation, co-transfection and sex-reversal studies all point to a feedforward, self-reinforcing pathway in which SF1 and SRY cooperatively upregulate Sox9 and then, together with SF1, SOX9 also binds to the enhancer to help maintain its own expression after that of SRY has ceased. Our results open up the field, permitting further characterization of the molecular mechanisms regulating sex determination and how they have evolved, as well as how they fail in cases of sex reversal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.

            In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Consensus statement on management of intersex disorders.

              I A Hughes (2005)
                Bookmark

                Author and article information

                Journal
                Best Practice & Research Clinical Endocrinology & Metabolism
                Best Practice & Research Clinical Endocrinology & Metabolism
                Elsevier BV
                1521690X
                January 2022
                January 2022
                : 36
                : 1
                : 101633
                Article
                10.1016/j.beem.2022.101633
                35249806
                9567ef97-28d6-4e45-b7e3-b43c29b3a64c
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article