4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A positive neighborhood walkability is associated with a higher magnitude of leisure walking in adults upon COVID-19 restrictions: a longitudinal cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previous cross-sectional and longitudinal observational studies revealed positive relationships between contextual built environment components and walking behavior. Due to severe restrictions during COVID-19 pandemic lockdowns, physical activity was primarily performed within the immediate living area. Using this unique opportunity, we evaluated whether built environment components were associated with the magnitude of change in walking activity in adults during COVID-19 restrictions.

          Methods

          Data on self-reported demographic characteristics and walking behaviour were extracted from the prospective longitudinal Lifelines Cohort Study in the Netherlands of participants ≥ 18 years. For our analyses, we made use of the data acquired between 2014–2017 ( n = 100,285). A fifth of the participants completed the questionnaires during COVID-19 restrictive policies in July 2021 ( n = 20,806). Seven spatial components were calculated for a 500m and 1650m Euclidean buffer per postal code area in GIS: population density, retail and service destination density, land use mix, street connectivity, green space density, sidewalk density, and public transport stops. Additionally, the walkability index (WI) of these seven components was calculated. Using multivariable linear regression analyses, we analyzed the association between the WI (and separate components) and the change in leisure walking minutes/week. Included demographic variables were age, gender, BMI, education, net income, occupation status, household composition and the season in which the questionnaire was filled in.

          Results

          The average leisure walking time strongly increased by 127 min/week upon COVID-19 restrictions. All seven spatial components of the WI were significantly associated with an increase in leisure walking time; a 10% higher score in the individual spatial component was associated with 5 to 8 more minutes of leisure walking/week. Green space density at the 500m Euclidean buffer and side-walk density at the 1650m Euclidean buffer were associated with the highest increase in leisure walking time/week. Subgroup analysis revealed that the built environment showed its strongest impact on leisure walking time in participants not engaging in leisure walking before the COVID-19 pandemic, compared to participants who already engaged in leisure walking before the COVID-19 pandemic.

          Conclusions

          These results provide strong evidence that the built environment, corrected for individual-level characteristics, directly links to changes observed in leisure walking time during COVID-19 restrictions. Since this relation was strongest in those who did not engage in leisure walking before the COVID-19 pandemic, our results encourage new perspectives in health promotion and urban planning.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12966-023-01512-3.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.

          Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases such as coronary heart disease, type 2 diabetes, and breast and colon cancers, and shortens life expectancy. Because much of the world's population is inactive, this link presents a major public health issue. We aimed to quantify the eff ect of physical inactivity on these major non-communicable diseases by estimating how much disease could be averted if inactive people were to become active and to estimate gain in life expectancy at the population level. For our analysis of burden of disease, we calculated population attributable fractions (PAFs) associated with physical inactivity using conservative assumptions for each of the major non-communicable diseases, by country, to estimate how much disease could be averted if physical inactivity were eliminated. We used life-table analysis to estimate gains in life expectancy of the population. Worldwide, we estimate that physical inactivity causes 6% (ranging from 3·2% in southeast Asia to 7·8% in the eastern Mediterranean region) of the burden of disease from coronary heart disease, 7% (3·9-9·6) of type 2 diabetes, 10% (5·6-14·1) of breast cancer, and 10% (5·7-13·8) of colon cancer. Inactivity causes 9% (range 5·1-12·5) of premature mortality, or more than 5·3 million of the 57 million deaths that occurred worldwide in 2008. If inactivity were not eliminated, but decreased instead by 10% or 25%, more than 533 000 and more than 1·3 million deaths, respectively, could be averted every year. We estimated that elimination of physical inactivity would increase the life expectancy of the world's population by 0·68 (range 0·41-0·95) years. Physical inactivity has a major health eff ect worldwide. Decrease in or removal of this unhealthy behaviour could improve health substantially. None.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis

              Abstract Objective To examine the dose-response associations between accelerometer assessed total physical activity, different intensities of physical activity, and sedentary time and all cause mortality. Design Systematic review and harmonised meta-analysis. Data sources PubMed, PsycINFO, Embase, Web of Science, Sport Discus from inception to 31 July 2018. Eligibility criteria Prospective cohort studies assessing physical activity and sedentary time by accelerometry and associations with all cause mortality and reported effect estimates as hazard ratios, odds ratios, or relative risks with 95% confidence intervals. Data extraction and analysis Guidelines for meta-analyses and systematic reviews for observational studies and PRISMA guidelines were followed. Two authors independently screened the titles and abstracts. One author performed a full text review and another extracted the data. Two authors independently assessed the risk of bias. Individual level participant data were harmonised and analysed at study level. Data on physical activity were categorised by quarters at study level, and study specific associations with all cause mortality were analysed using Cox proportional hazards regression analyses. Study specific results were summarised using random effects meta-analysis. Main outcome measure All cause mortality. Results 39 studies were retrieved for full text review; 10 were eligible for inclusion, three were excluded owing to harmonisation challenges (eg, wrist placement of the accelerometer), and one study did not participate. Two additional studies with unpublished mortality data were also included. Thus, individual level data from eight studies (n=36 383; mean age 62.6 years; 72.8% women), with median follow-up of 5.8 years (range 3.0-14.5 years) and 2149 (5.9%) deaths were analysed. Any physical activity, regardless of intensity, was associated with lower risk of mortality, with a non-linear dose-response. Hazards ratios for mortality were 1.00 (referent) in the first quarter (least active), 0.48 (95% confidence interval 0.43 to 0.54) in the second quarter, 0.34 (0.26 to 0.45) in the third quarter, and 0.27 (0.23 to 0.32) in the fourth quarter (most active). Corresponding hazards ratios for light physical activity were 1.00, 0.60 (0.54 to 0.68), 0.44 (0.38 to 0.51), and 0.38 (0.28 to 0.51), and for moderate-to-vigorous physical activity were 1.00, 0.64 (0.55 to 0.74), 0.55 (0.40 to 0.74), and 0.52 (0.43 to 0.61). For sedentary time, hazards ratios were 1.00 (referent; least sedentary), 1.28 (1.09 to 1.51), 1.71 (1.36 to 2.15), and 2.63 (1.94 to 3.56). Conclusion Higher levels of total physical activity, at any intensity, and less time spent sedentary, are associated with substantially reduced risk for premature mortality, with evidence of a non-linear dose-response pattern in middle aged and older adults. Systematic review registration PROSPERO CRD42018091808.
                Bookmark

                Author and article information

                Contributors
                marcia.spoelder-merkens@radboudumc.nl
                Journal
                Int J Behav Nutr Phys Act
                Int J Behav Nutr Phys Act
                The International Journal of Behavioral Nutrition and Physical Activity
                BioMed Central (London )
                1479-5868
                26 September 2023
                26 September 2023
                2023
                : 20
                : 116
                Affiliations
                [1 ]GRID grid.10417.33, ISNI 0000 0004 0444 9382, Department of Physiology, , Radboud Institute for Health Sciences, Radboud University Medical Center, ; Philips Van Leydenlaan 15, Nijmegen, 6525 EX The Netherlands
                [2 ]GRID grid.10417.33, ISNI 0000 0004 0444 9382, Present affiliation: Department of Primary and Community Care, , Radboud Institute for Health Sciences, Radboud University Medical Center, ; Geert Grooteplein Noord 21, Nijmegen, 6525 EZ The Netherlands
                [3 ]Department of Geography, Planning and Environment, Institute for Management Research, Radboud University, ( https://ror.org/016xsfp80) Nijmegen, The Netherlands
                [4 ]GRID grid.12380.38, ISNI 0000 0004 1754 9227, Amsterdam UMC, Department of Epidemiology and Data Science, , Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, ; Boelelaan 1089a, Amsterdam, 1081HV The Netherlands
                [5 ]Amsterdam Public Health, Health Behaviours and Chronic Diseases, Amsterdam, The Netherlands
                [6 ]GRID grid.12380.38, ISNI 0000 0004 1754 9227, Upstream Team, , Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, ; Amsterdam, The Netherlands
                [7 ]Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, ( https://ror.org/04zfme737) Liverpool, UK
                Author information
                http://orcid.org/0000-0002-9217-0642
                Article
                1512
                10.1186/s12966-023-01512-3
                10521432
                37752497
                953406d4-46dd-4a8c-990b-bb8af944417f
                © BioMed Central Ltd., part of Springer Nature 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 April 2023
                : 7 September 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001826, ZonMw;
                Award ID: 10430 03201 0013
                Award ID: 91118017
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Nutrition & Dietetics
                walking,built environment,health,physical activity,covid-19
                Nutrition & Dietetics
                walking, built environment, health, physical activity, covid-19

                Comments

                Comment on this article