0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity

      , , , , ,
      Food Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic endotoxemia initiates obesity and insulin resistance.

          Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat-fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet-induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms linking obesity to insulin resistance and type 2 diabetes.

            Obesity is associated with an increased risk of developing insulin resistance and type 2 diabetes. In obese individuals, adipose tissue releases increased amounts of non-esterified fatty acids, glycerol, hormones, pro-inflammatory cytokines and other factors that are involved in the development of insulin resistance. When insulin resistance is accompanied by dysfunction of pancreatic islet beta-cells - the cells that release insulin - failure to control blood glucose levels results. Abnormalities in beta-cell function are therefore critical in defining the risk and development of type 2 diabetes. This knowledge is fostering exploration of the molecular and genetic basis of the disease and new approaches to its treatment and prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Impact of Diet and Lifestyle on Gut Microbiota and Human Health

              There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                May 2021
                May 2021
                : 343
                : 128395
                Article
                10.1016/j.foodchem.2020.128395
                33268179
                94c7aee7-a1a7-4644-8e9f-43279b3ce7b7
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article