Arctic and boreal regions are undergoing dramatic warming and also possess the world’s highest concentration of lakes. However, ecological changes in lakes are poorly understood. We present a continental-scale trend analysis of satellite lake color in the green wavelengths, which shows declining greenness from 1984 to 2019 in Arctic-boreal lakes across western North America. Annual 30-m Landsat composites indicate lake greenness has decreased by 15%. Our findings show a relationship between lake color, rising air temperatures, and increasing precipitation, supporting the theory that warming may be increasing connectivity between lakes and surrounding landscapes. Overall, our results bring a powerful set of observations in support of the hypothesis that lakes are sentinels for global change in rapidly warming Arctic-boreal ecosystems.
The highest concentration of the world’s lakes are found in Arctic-boreal regions [C. Verpoorter, T. Kutser, D. A. Seekell, L. J. Tranvik, Geophys. Res. Lett. 41, 6396–6402 (2014)], and consequently are undergoing the most rapid warming [J. E. Overland et al., Arctic Report Card (2018)]. However, the ecological response of Arctic-boreal lakes to warming remains highly uncertain. Historical trends in lake color from remote sensing observations can provide insights into changing lake ecology, yet have not been examined at the pan-Arctic scale. Here, we analyze time series of 30-m Landsat growing season composites to quantify trends in lake greenness for >4 × 10 5 waterbodies in boreal and Arctic western North America. We find lake greenness declined overall by 15% from the first to the last decade of analysis within the 6.3 × 10 6-km 2 study region but with significant spatial variability. Greening declines were more likely to be found in areas also undergoing increases in air temperature and precipitation. These findings support the hypothesis that warming has increased connectivity between lakes and the land surface [A. Bring et al., J. Geophys. Res. Biogeosciences 121, 621–649 (2016)], with implications for lake carbon cycling and energy budgets. Our study provides spatially explicit information linking climate to pan-Arctic lake color changes, a finding that will help target future ecological monitoring in remote yet rapidly changing regions.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.