Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical metamaterials for sports helmets: structural mechanics, design optimisation, and performance

      , , , , , ,
      Smart Materials and Structures
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sports concussions are a public health concern. Improving helmet performance to reduce concussion risk is a key part of the research and development community response. Direct and oblique head impacts with compliant surfaces that cause long-duration moderate or high linear and rotational accelerations are associated with a high rate of clinical diagnoses of concussion. As engineered structures with unusual combinations of properties, mechanical metamaterials are being applied to sports helmets, with the goal of improving impact performance and reducing brain injury risk. Replacing established helmet material (i.e. foam) selection with a metamaterial design approach (structuring material to obtain desired properties) allows the development of near-optimal properties. Objective functions based on an up-to-date understanding of concussion, and helmet testing that is representative of actual sporting collisions and falls, could be applied to topology optimisation regimes, when designing mechanical metamaterials for helmets. Such regimes balance computational efficiency with predictive accuracy, both of which could be improved under high strains and strain rates to allow helmet modifications as knowledge of concussion develops. Researchers could also share mechanical metamaterial data, topologies, and computational models in open, homogenised repositories, to improve the efficiency of their development.

          Related collections

          Most cited references365

          • Record: found
          • Abstract: not found
          • Article: not found

          Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultralight, ultrastiff mechanical metamaterials.

            The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, whose structural members are designed to carry loads in tension or compression. Production of these microlattices, with polymers, metals, or ceramics as constituent materials, is made possible by projection microstereolithography (an additive micromanufacturing technique) combined with nanoscale coating and postprocessing. We found that these materials exhibit ultrastiff properties across more than three orders of magnitude in density, regardless of the constituent material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Negative Refraction Makes a Perfect Lens

              With a conventional lens sharpness of the image is always limited by the wavelength of light. An unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such "superlenses" can be realized in the microwave band with current technology. Our simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver. This optical version resolves objects only a few nanometers across.
                Bookmark

                Author and article information

                Contributors
                Journal
                Smart Materials and Structures
                Smart Mater. Struct.
                IOP Publishing
                0964-1726
                1361-665X
                October 19 2023
                November 01 2023
                October 19 2023
                November 01 2023
                : 32
                : 11
                : 113001
                Article
                10.1088/1361-665X/acfddf
                94aeaa3f-55ae-4d6a-a8ab-0f0b3094c4db
                © 2023

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article