31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      γδ T Cells and Their Potential for Immunotherapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vγ9Vδ2 (also termed Vγ2Vδ2) T cells, a major human peripheral blood γδ T cell subset, recognize microbial ( E)-4-hydroxy-3-methylbut-2-enyl diphosphate and endogenous isopentenyl diphosphate in a TCR-dependent manner. The recognition does not require specific accessory cells, antigen uptake, antigen processing, or MHC class I, class II, or class Ib expression. This subset of T cells plays important roles in mediating innate immunity against a wide variety of infections and displays potent and broad cytotoxic activity against human tumor cells. Because γδT cells express both natural killer receptors such as NKG2D and γδ T cell receptors, they are considered to represent a link between innate and adaptive immunity. In addition, activated γδ T cells express a high level of antigen-presenting cell-related molecules and can present peptide antigens derived from destructed cells to αβ T cells. Utilizing these antimicrobial and anti-tumor properties of γδ T cells, preclinical and clinical trials have been conducted to develop novel immunotherapies for infections and malignancies. Here, we review the immunological properties of γδ T cells including the underlying recognition mechanism of nonpeptitde antigens and summarize the results of γδ T cell-based therapies so far performed. Based on the results of the reported trials, γδ T cells appear to be a promising tool for novel immunotherapies against certain types of diseases.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA.

          Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets.

            The production of cytokines such as interferon-gamma and interleukin 17 by alphabeta and gammadelta T cells influences the outcome of immune responses. Here we show that most gammadelta T lymphocytes expressed the tumor necrosis factor receptor family member CD27 and secreted interferon-gamma, whereas interleukin 17 production was restricted to CD27(-) gammadelta T cells. In contrast to the apparent plasticity of alphabeta T cells, the cytokine profiles of these distinct gammadelta T cell subsets were essentially stable, even during infection. These phenotypes were established during thymic development, when CD27 functions as a regulator of the differentiation of gammadelta T cells at least in part by inducing expression of the lymphotoxin-beta receptor and genes associated with trans-conditioning and interferon-gamma production. Thus, the cytokine profiles of peripheral gammadelta T cells are predetermined mainly by a mechanism involving CD27.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gammadelta T cells and the lymphoid stress-surveillance response.

              The investigation of gammadelta T cells has identified a rapid lymphoid stress-surveillance response to microbial and nonmicrobial tissue perturbation. In addition to providing local protection, this response provides an immediate source of cytokines, chemokines, and other functions that can substantially affect downstream, adaptive immunity. Recent studies have identified striking mechanisms by which gammadelta cells meet the requirements of stress surveillance. For example, high response frequencies can reflect a unique nature of antigen engagement by the T cell receptor (TCR), developmental focusing of the repertoire by selection events, or the use of nonclonotypic receptors to initiate responses. Likewise, rapid functional deployment can be facilitated by the preprogramming of gammadelta cells during development. Additionally, gammadelta cells can directly influence adaptive immunity by functioning as antigen-presenting cells. With lymphoid stress surveillance likely to underpin numerous aspects of inflammation, tumor immunology, infectious disease, and autoimmunity, this perspective considers its properties and its emerging potential for clinical manipulation.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2014
                10 January 2014
                : 10
                : 2
                : 119-135
                Affiliations
                1. Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
                2. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
                3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
                4. Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
                Author notes
                ✉ Corresponding authors: Yanling Wu, Lab of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China; Tel: +86-571-87115282; Fax: +86-571-87115282; e-mail: ylwu@ 123456cdc.zj.cn ; Wen Zhang, Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China; Tel: +86-571-88871507; Fax: +86-571-88871507; e-mail: wzhang63@ 123456zjut.edu.cn .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv10p0119
                10.7150/ijbs.7823
                3920167
                24520210
                949abac4-4ad6-4fcb-9b42-4a0def3668f7
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 4 October 2013
                : 17 December 2013
                Categories
                Review

                Life sciences
                tumor,nonpeptide antigen,γδ t cells,immunotherapy,autoimmune and allergic diseases,infection

                Comments

                Comment on this article