3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Guanxinning Tablet Alleviates Post-Ischemic Stroke Injury Via Regulating Complement and Coagulation Cascades Pathway and Inflammatory Network Mobilization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Currently, ischemic stroke (IS) continues to significantly contribute to functional deterioration and reduced life quality. Regrettably, the choice of neuro-rehabilitation interventions to enhance post-IS outcomes is limited. Guanxinning tablet (GXNT), a multi-component medicine composed of Danshen and Chuanxiong, has demonstrated neuroprotective potential against ischemic brain injury and diabetic encephalopathy. However, the therapeutic impact of GXNT on post-IS functional outcomes and pathological injury, as well as the underlying molecular mechanisms and anti-IS active substances, remain unclear.

          Methods

          To answer the above questions, neurological and behavioral assessment, cerebral lesions, and blood-brain barrier (BBB) integrity were combined to comprehensively investigate GXNT’s pharmacodynamic effects against post-IS injury. The possible molecular mechanisms were revealed through transcriptome sequencing coupled with experimental verification. Furthermore, the brain tissue distribution of main components in GXNT, behavioral changes of IS zebrafish, and molecular docking were integrated to identify the anti-IS active compounds.

          Results

          Treatment with GXNT significantly mitigated the functional deficits, cerebral cortex lesions, and BBB disruption following IS. Transcriptome sequencing and bioinformatics analysis suggested that complement and coagulation cascades as well as inflammation might play crucial roles in the GXNT’s therapeutic effects. Molecular biology experiments indicated that GXNT administration effectively normalized the abnormal expression of mRNA and protein levels of key targets related to complement and coagulation cascades (eg C3 and F7) and inflammation (eg MMP3 and MMP9) in the impaired cortical samples of IS mice. The locomotor promotion in IS zebrafish as well as favorable affinity with key proteins (C3, F7, and MMP9) highlighted anti-IS activities of brain-permeating constituents (senkyunolide I and protocatechuic acid) of GXNT.

          Conclusion

          Taken together, these intriguing findings indicate that GXNT intervention exerts a beneficial effect against post-IS injury via regulating the complement and coagulation cascades pathway and mobilizing inflammatory network. Senkyunolide I and protocatechuic acid show promise as anti-IS active compounds.

          Graphical Abstract

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          cytoHubba: identifying hub objects and sub-networks from complex interactome

          Background Network is a useful way for presenting many types of biological data including protein-protein interactions, gene regulations, cellular pathways, and signal transductions. We can measure nodes by their network features to infer their importance in the network, and it can help us identify central elements of biological networks. Results We introduce a novel Cytoscape plugin cytoHubba for ranking nodes in a network by their network features. CytoHubba provides 11 topological analysis methods including Degree, Edge Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Betweenness, and Stress) based on shortest paths. Among the eleven methods, the new proposed method, MCC, has a better performance on the precision of predicting essential proteins from the yeast PPI network. Conclusions CytoHubba provide a user-friendly interface to explore important nodes in biological networks. It computes all eleven methods in one stop shopping way. Besides, researchers are able to combine cytoHubba with and other plugins into a novel analysis scheme. The network and sub-networks caught by this topological analysis strategy will lead to new insights on essential regulatory networks and protein drug targets for experimental biologists. According to cytoscape plugin download statistics, the accumulated number of cytoHubba is around 6,700 times since 2010.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association

            Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). Methods: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year’s worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year’s edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. Results: Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. Conclusions: The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DAVID: Database for Annotation, Visualization, and Integrated Discovery

              Rationale The post-genomic era has introduced high-throughput methodologies that generate experimental data at rates that exceed knowledge growth. In particular, high-density biochips including complementary deoxyribonucleic acid (cDNA) microarrays, oligonucleotide microarrays, and rapidly evolving proteomics platforms represent modern tools able to interrogate biology on a genome-wide scale and generate tens of thousands of data points simultaneously [1]. While researchers are beginning to appreciate the statistical rigors required for the analysis of genome-scale datasets, a rate-limiting step in knowledge growth occurs at the transition from statistical significance to biological discovery. A number of public efforts are currently focusing on the annotation and curation of gene-specific functional data, including LocusLink, Protein Information Resource (PIR), GeneCards, Proteome, Kyoto Encyclopedia of Genes and Genomes (KEGG), Ensembl, and Swiss-Prot to name but a few [2-8]. These resources provide exceptional depth and coverage of the functional data available for a given gene, but are not designed to effectively explore the biological knowledge associated with hundreds or thousands of genes in parallel. In order to facilitate the functional annotation and analysis of large lists of genes we have developed a Database for Annotation, Visualization, and Integrated Discovery (DAVID), which provides a set of data-mining tools that systematically combine functionally descriptive data with intuitive graphical displays [9]. DAVID provides exploratory visualization tools that promote discovery through functional classification, biochemical pathway maps, and conserved protein domain architectures, while simultaneously remaining linked to rich sources of biological annotation. DAVID expedites the functional annotation and analysis of any list of genes encoded by human, mouse, rat, or fly genomes. DAVID's functionality is demonstrated using the Affymetrix GeneChip data of Cicala et al. [10]. System architecture and maintenance An automated procedure written in Microsoft Visual Basic (VB) 6.0 updates DAVID weekly with the following procedures: call a series of Perl and Java applications that download public data through anonymous file transfer protocols (FTP) (Table 1); unpack and parse desired annotation data; create tab-delimited data files ready for database import; and import data into an Oracle 8i relational database management system (RDBMS) using Oracle's SQL*Loader application. Microsoft's IIE web server and Active Server Page technology are used to access the database using JavaBeans and the structured query language (SQL). LocusLink numbers for Affymetrix probe sets are derived from University of Michigan associations [11] or NetAffx [12]. Functional annotations and database cross-references are derived from LocusLink, which provides stable, human-curated representations of genes. For more detailed information regarding the data sources used by DAVID please see the FAQ section at [9]. Analysis modules DAVID is composed of four main modules: Annotation Tool, GoCharts, KeggCharts, and DomainCharts. The Annotation Tool is an automated method for the functional annotation of gene lists. Any combination of annotation data can be chosen from 10 options by selecting the appropriate checkboxes (Table 2). The annotations are added to the submitted gene list by selecting the upload button, which returns an HTML table containing the user's original list of identifiers appended with the chosen functional annotations. Unannotated genes are included in the output with no appended data for tracking purposes. The GoCharts module graphically displays the distribution of differentially expressed genes among functional categories using the controlled vocabulary of the Gene Ontology Consortium (GO), which provides a structured language that can be applied to the functions of genes and proteins in all organisms even as knowledge continues to accumulate and change [13]. The language is structured in a directed acyclic graph (DAG), wherein term specificity increases and genome coverage decreases as one moves down the hierarchy. In contrast with a true hierarchy, child terms in a DAG may have more than one parent term and may have a different class of relationship with its different parents. The structure of GO starts with three main categories, Biological Process, Molecular Function, and Cellular Component. Biological Process includes broad biological goals, such as mitosis or purine metabolism, that are accomplished by ordered assemblies of molecular functions. Molecular Function describes the tasks performed by individual gene products; examples are transcription factor and DNA helicase. The Cellular Component classification type involves subcellular structures, locations, and macromolecular complexes; examples include nucleus, telomere, and origin recognition complex. After choosing a classification type, levels that determine list coverage and specificity are chosen by selecting the appropriate radio button. Level 1 provides the highest list coverage with the least amount of term specificity. With each increasing level coverage decreases while specificity increases so that level 5 provides the least amount of coverage with the highest term specificity. Classification data is displayed as a bar chart, where the length of the bar represents the number of gene identifiers in each category. The user can set visualization parameters for sorting output data and displaying categories that contain at least a minimum number of genes. Selecting an individual bar opens a new HTML table displaying the gene identifier, LocusLink number, gene name, the current classification, and other classifications for each gene in that category. A 'Show All' button opens a new HTML table displaying all classification data and a 'Show Chart Data' button opens an HTML table containing the underlying chart data, thus allowing users to recreate customized chart graphics in a spreadsheet program. A new chart can be displayed for any subset of genes by selecting the classification type and level using the checkboxes and radio buttons available within the user's current page that allow for drill-down capabilities. A count of the number of genes annotated is included in the output, and unannotated genes are binned into the 'unclassified' category, thus providing users with an automated tracking system for genes not annotated. KeggCharts graphically display the distribution of differentially expressed genes among KEGG biochemical pathways. Each pathway is linked to the KEGG pathway map, wherein differentially expressed genes from the original list are highlighted in red. In this view genes are further linked to additional annotations available through KEGG's DBGET retrieval system [6]. As with GoCharts, the user can set visualization parameters for sorting output data and displaying categories that contain at least a minimum number of genes and the KeggCharts visualization inherits all of the dynamic features of GoCharts. DomainCharts display the distribution of differentially expressed genes among PFAM protein domains [14]. Each domain designation is linked to the Conserved Domain Database (CDD) of the National Center for Biotechnology Information (NCBI), where details regarding domain function, structure and sequence are readily available. As with GoCharts and KeggCharts, the user can set visualization parameters for sorting output data and displaying categories that contain at least a minimum number of genes and the DomainCharts visualization inherits all of the dynamic features of GoCharts and KeggCharts. For further information regarding the functionality of DAVID visit the FAQ section at [9]. Using DAVID to mine functional annotation To demonstrate the functionality of DAVID we analyzed a list of genes differentially expressed in human peripheral blood mononuclear cells (PBMCs) after incubation with HIV-1 envelope proteins. Details of the experimental, RNA preparation, and GeneChip hybridization procedures, along with details of the chip-to-chip normalizations and statistical analysis of differential gene expression are provided in Cicala et al. [10]. Briefly, primary human PBMCs and monocyte-derived macrophages were incubated for 16 hours with HIV-1 envelope protein (gp120). High-density oligonucleotide microarrays (Affymetrix HU-95A GeneChip) were used to monitor gp120-induced transcriptional events. This analysis resulted in the identification of 402 differentially expressed genes. Whereas 16 genes modulated by HIV-1 gp120 have previously been associated with HIV replication and/or envelope signaling, the remaining genes are of unknown function or have never been associated with HIV-1 or gp120. Converting this list of genes into biological meaning requires the gathering of pertinent information from several data repositories. For many researchers this process consists of iterative browsing through several databases for each gene, manually gathering gene-specific information regarding sequence, function, pathway, and disease association. In contrast, the systematic approach of DAVID simultaneously adds biologically rich information derived from several public data sources to lists of genes in parallel. Selecting DAVID's Annotation Tool and uploading the list of 402 differentially expressed genes initiates the functional annotation and analysis of the entire dataset. Once submitted, the gene list is stored for the entire analysis session, allowing users to switch between modules without having to resubmit data. Annotation Tool The Annotation Tool provides several annotation options and builds a tabular view of the users gene list and the available annotations (Table 2). Choosing the annotation fields Gene Symbol, LocusLink, OMIM, Unigene, Reference Sequence, and Gene Name followed by selecting the 'Upload' button produces an HTML table in the web browser containing all genes and their available annotations, where gene identifiers, descriptive and classification data are pulled from the database and appended to the gene list (Figure 1). Gene identifiers such as Gene Symbol and LocusLink are hyperlinked to additional gene-specific data available at their original sources, thus providing in-depth gene-specific details and annotation pedigrees. Classification data and functional summaries can be used to quickly scan for information relevant to the researcher's experimental system. The server time required for execution of this module correlates linearly with the size of the gene list and takes less than 45 seconds for lists of up to 1,000 genes (Figure 2, numbers in parentheses represent r2 values). These results demonstrate the power and efficiency of an integrated approach to the functional annotation of large datasets. GoCharts Choosing the GoCharts module opens a new window with a variety options. Users choose between three general types of classification (biological process, molecular function, and cellular component) and five levels of annotation that represent term coverage and specificity (see Analysis Modules section). Any combination of classification and coverage level can be specified. Also included are options to annotate gene lists with all GO terms available or only the most specific terms, which are referred to as terminal nodes. The option to choose different levels of term specificity provides needed flexibility and thus allows researchers to determine dynamically which level of coverage and specificity best suits their data and stage of analysis. For instance, early-stage analyses may consist of annotating gene lists with very general terms in order to gain a broad understanding of the data. In this case, selecting biological process and level 1 classifies genes using general terms such as 'death' and 'cell communication'. Using increased term specificity facilitates the extraction of more detailed functional information. In this case selecting biological process and level 5 classifies genes using terms such as 'apoptotic mitochondrial changes' and 'chemosensory perception'. However, increased term specificity comes a cost, in that as it increases list coverage decreases (Figure 3). In our studies we find that level 2 typically maintains good coverage while also providing meaningful term specificity. Figure 4a illustrates how the GoCharts visualization quickly reveals that 35 differentially expressed genes are involved in 'stress responses'. Each GO term can be viewed in the tree or DAG views by hyperlinks to QuickGO [15]. Because HIV-1 has a major impact on the function of cells of the immune system and their ability to carry out stress responses, we selected the histogram bar representing the number of genes involved in stress response, which opens an HTML table containing the Affymetrix identifier, LocusLink number, gene name, the current classification, and other classifications for all 35 genes (Figure 4b). Now that we have reduced our gene list to those genes involved in stress responses, we further characterized this subset by repeating the GoCharts procedure available at the top of the stress-response HTML table. Choosing molecular function, level 3 produces a new histogram that quickly reveals that nearly half (16/35) of the stress-response genes possess cytokine activity (Figure 4c). Indeed, cytokines have been shown to play an important part in the HIV-1 life cycle and the results obtained here suggest that treatment of PBMCs with HIV-1 envelope proteins significantly modulates the transcription of numerous cytokine genes. The efficiency with which GoCharts systematically summarized this large dataset with graphic visualizations, while remaining linked to primary data and external resources drastically improved the discovery process. KeggCharts Figure 5a depicts the output of KeggCharts with a histogram displaying the distribution of differentially expressed genes among biochemical pathways. The chart shows that a KEGG pathway of apoptosis includes five genes induced by HIV-1 gp120. Selecting the pathway name opens the corresponding KEGG biochemical pathway map and highlights in red outline the differentially expressed genes functioning in that pathway (Figure 5b). In this view genes are further linked to additional annotations available through KEGG's DBGET retrieval system [6]. Note that only four genes in the KEGG apoptosis pathway are highlighted in red, while the KeggCharts tool mapped five Affymetrix probe sets to the apoptosis pathway. This difference is due to the fact that two of the Affymetrix probesets are targeting the same 'TNF-alpha' gene. DomainCharts DomainCharts are operationally akin to both KeggCharts and GoCharts, except that the results visually depicting the distribution of genes among PFAM protein domains (Figure 6a). The DomainCharts histogram identifies 16 genes with kinase domains (pkinase), probably reflecting the effects of HIV-1 gp120 on the signal transduction machinery. The chart also identifies six genes with interleukin-8 domains (IL-8), a domain that represents a highly conserved motif among stress-response cytokines. Selecting the domain name 'IL8' opens the Conserved Domain Database (CDD) page corresponding to that PFAM domain (Figure 6b). This page provides detailed sequence, structure, and functional information about the IL-8 domain and the proteins that contain it. Comparison of DAVID with related programs Several other programs have overlapping and related functionality when compared with DAVID, but none combines all of DAVID's features within a single platform. These programs include ENSMART [16], FatiGO [17], GeneLynx [18], GoMiner [19], MAPPFinder [20], MatchMiner [21], Resourcerer [22] and Source [23], which collectively fall into two general categories: exploratory tools, defined as combining functional annotation with some form of graphical representation of summarized data; and annotation tools, defined as providing query-based access to functional annotation and producing a tabular output. FatiGO, GoMiner, and MAPPFinder are exploratory tools, whereas ENSMART, GeneLynx, MatchMiner, Resourcerer, and Source are strictly annotation tools that produce tabular output. A major advantage of DAVID is that it combines features of both categories, with GoCharts, KeggCharts, and DomainCharts representing exploratory tools, while DAVID's Annotation Tool produces a tabular output of functional annotation. We compared DAVID and these related programs on the basis of their available implementations and documentation as of May 2003, and the distribution of DAVID's functional features among these programs is shown in Table 3. Exploratory tools FatiGO is a web-accessible application that functions in much the same way as DAVID's GoCharts, including the ability to specify term-specificity level. Unlike DAVID, FatiGO does not allow the setting of a minimum hit threshold for simplified viewing of only the most highly represented functional categories. Likewise, FatiGO limits the graphical output to only one top-level GO category at a time, whereas DAVID allows the combined viewing of biological process, molecular function, and cellular component annotations simultaneously. FatiGO's static barchart output looks very similar to DAVID's GoChart; an important distinction is that DAVID's GoCharts are dynamic, allowing users to drill-down and traverse the GO hierarchy for any subset of genes, view the underlying chart data and associated annotations, and link out to external data repositories including LocusLink and QuickGO. As shown in Table 3 the majority of accession types accepted and functional annotations offered by DAVID are not available from FatiGO. GoMiner is a standalone Java application that requires downloading of the program itself along with at least two auxiliary files, one for DAG visualization and another for protein structural visualization. The remote database queried by GoMiner is reported to be updated every six months. It has been our experience that, to accurately reflect the current knowledge associated with a given gene, functional annotation data must be updated far more frequently. If users wish to use GoMiner with a local copy of its annotation database, they must also download and install a local copy of the MySQL database and the required drivers, a process that may be difficult for inexperienced users of MySQL. In contrast, DAVID is web-accessible and updated weekly. The functionality of GoMiner is most similar to DAVID's GoCharts module. An enhanced feature of GoMiner is that it provides intuitive tree and DAG views of genes embedded within the GO hierarchy. DAVID has the ability to display such views through hyperlinks of GO terms to QuickGO's tree and DAG views. A unique function provided by DAVID is the ability to drill-down and traverse the GO hierarchy for any subset of genes sharing a common classification, as demonstrated by the identification of stress response genes with cytokine activity. Neither the tree nor DAG view of GoMiner provides this functionality. The body of biological knowledge associated with any list of genes extends far beyond the structured vocabulary of GO. DAVID provides, in addition to GoCharts, two additional analysis modules that utilize PFAM protein domain designations and KEGG biochemical pathways to graphically summarize the distribution of genes among functional domains and pathways. Moreover, DAVID highlights pathway members within the biochemical pathways provided by KEGG. Whereas GoMiner provides hyperlinks to pathway databases such as BioCarta and KEGG for individual genes, lists of genes can only be batch processed in the context of GO. In addition to providing hyperlinks to external data repositories for each gene, DAVID provides links to primary sequence information available at NCBI and human-curated functional summaries parsed from LocusLink. These features are not available in GoMiner. DAVID can be used to collect, analyze and explore functional annotation associated with human, mouse, rat, and Drosophila gene lists, whereas GoMiner is restricted to analyzing human data. Another restrictive feature of GoMiner is that it only takes HUGO gene symbols as input. This is problematic in that many genes and expressed sequence tags (ESTs) do not have HUGO symbols. Moreover, this restriction requires the translation of every gene list into HUGO symbols. Like GoMiner, MAPPFinder is a stand-alone, exploratory tool for the analysis of lists of genes within the context of GO. The downloadable program comes with a copy of the supporting relational database of gene to GO-term associations. However, as with GoMiner there are important considerations regarding the installation, support, and updating of the software and underlying database, as indicated by the documentation and bug reports listed on their website. Importantly, in addition to the batch processing of gene lists within the context of GO, MAPPFinder provides functionality similar to that of DAVID's KeggCharts, providing the ability to view lists of genes within the context of biochemical pathways. However, in order to use this functionality through MAPPFinder, users must download additional programs and files, including the GenMAPP program and its associated MAPP files, whereas the KeggCharts module of DAVID is easily accessible at the click of a button. Annotation tools ENSMART is a web-accessible application that integrates an enormous amount of functional annotation for numerous species. ENSMART takes as input lists of several accession types, including Affymetrix probe sets, making it quite flexible. Database cross-references provided by ENSMART cover a broad spectrum of functional annotations pertaining to gene- and protein-specific attributes as well as disease and cross-species attributes. However, users are limited to a maximum of three cross-references for a given gene list. Unlike DAVID, ENSMART does not provide graphic summaries of GO categories, protein domains, or biochemical pathway membership, nor does ENSMART provide the ability to drill-down within groups of genes sharing common functional features. GeneLynx and Source are highly similar web-accessible annotation tools that provide a wealth of gene-specific information for individual genes and both are flexible in that they take as input several different accession types. However, the rich information and available hyperlinks provided in single-gene mode is lost when either GeneLynx or Source are used to batch process lists of genes. The output of batch processing with Source is a text-style table that is feasible for download and automated processing, but provides little utility for interactive exploration. Although GeneLynx can perform batch searching for a list of genes, functional annotations must be viewed one gene at a time. MatchMiner is a companion program of GoMiner that performs the translations of gene accession types into the HUGO symbols required by GoMiner. MatchMiner is simply a web-accessible resource for translating accession types. It takes several accession types but does not take LocusLink numbers, and although it was reported to accept identifiers from Affymetrix chip sets, MatchMiner returned no data for several gene lists composed of HuFL6800 probe sets. Notably, MatchMiner does not provide any functional annotation and is restricted to human data. Thus, within the context of the other exploratory and annotation tools discussed here, MatchMiner's utility is limited, or supportive, at best. Resourcerer is a web-accessible application for comparing and annotating human, mouse, and rat GeneChip and microarray platforms. A major feature of Resourcerer is its broad coverage of microarray platforms and its ability to identify overlapping gene targets between chips, even across technology platforms and species barriers. Resourcerer's output is in tabular form and provides hyperlinks to accession cross-references such as GenBank and UniGene. Resourcerer does not provide graphic summaries or annotations from GO, PFAM, KEGG, or any other resource, thus limiting its utility as a tool for functional annotation. Conclusions In conclusion, the development of any complete, in-silico discovery system requires full, query-based access to an integrated, up-to-date view of all relevant information, regardless of its physical location and content structure. Still in its infancy, DAVID represents the foundation of our continued development efforts that aim to integrate information-rich data sources and provide quantitative summaries and analysis methods. In addition to the functionality reported here, the methods of Hosack et al. [24] have been incorporated into a DAVID analysis module called EASEonline, which allows users to identify statistically over-represented functional categories within a given list of genes. Committed to maintaining a system able to coevolve with technological advances and the new forms of data that are sure to follow, DAVID's current design elements provide automated solutions that enable researchers to rapidly discover biological themes in large datasets consisting of lists of genes.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                18 September 2024
                2024
                : 18
                : 4183-4202
                Affiliations
                [1 ]Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University , Hangzhou, People’s Republic of China
                [2 ]Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, People’s Republic of China
                Author notes
                Correspondence: Lu Zhao; Yue Gao, Email lzhao@zju.edu.cn; gaoyue@hospital.westlake.edu.cn
                Article
                479881
                10.2147/DDDT.S479881
                11416781
                39308695
                9486c2c5-2db5-4833-b2b6-6e88c4a8ce9d
                © 2024 Wang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 10 June 2024
                : 10 September 2024
                Page count
                Figures: 6, Tables: 2, References: 61, Pages: 20
                Funding
                Funded by: National Natural Science Foundation of China, open-funder-registry 10.13039/501100001809;
                Funded by: Zhejiang Province Traditional Chinese Medicine Science and Technology Project;
                Funded by: Zhejiang Provincial Natural Science Foundation of China;
                Funded by: Construction Fund of Key Medical Disciplines of Hangzhou;
                Funded by: Fundamental Research Funds for the Central Universities;
                Funded by: Jingyao Chen and Qiong Huang from the Core Facilities, Zhejiang University School of Medicine;
                Funded by: Shanghai Applied Protein Technology Co., Ltd;
                This work was financially supported by grants from the National Natural Science Foundation of China (Grant No. 82104351), the Zhejiang Province Traditional Chinese Medicine Science and Technology Project (Grant No. 2024ZF023), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGY23H290005), the Construction Fund of Key Medical Disciplines of Hangzhou (Grant No. OO20200055), and the Fundamental Research Funds for the Central Universities (Grant No. 226-2023-00114). We thank Jingyao Chen and Qiong Huang from the Core Facilities, Zhejiang University School of Medicine for technical support in histopathology experiments. We appreciate Shanghai Applied Protein Technology Co., Ltd. (Shanghai, China) for the technical support of transcriptome sequencing.
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                guanxinning tablet,post-ischemic stroke injury,complement and coagulation cascades,inflammatory network mobilization,active substance

                Comments

                Comment on this article