29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson’s disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          A translational profiling approach for the molecular characterization of CNS cell types.

          The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Application of a translational profiling approach for the comparative analysis of CNS cell types.

            Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease.

              To achieve accuracy in studying the patterns of loss of midbrain dopamine-containing neurons in Parkinson's disease, we used compartmental patterns of calbindin D(28K) immunostaining to subdivide the substantia nigra with landmarks independent of the degenerative process. Within the substantia nigra pars compacta, we identified dopamine-containing neurons in the calbindin-rich regions ('matrix') and in five calbindin-poor pockets ('nigrosomes') defined by analysis of the three-dimensional networks formed by the calbindin-poor zones. These zones were recognizable in all of the brains, despite severe loss of dopamine-containing neurons. The degree of loss of dopamine-containing neurons in the substantia nigra pars compacta was related to the duration of the disease, and the cell loss followed a strict order. The degree of neuronal loss was significantly higher in the nigrosomes than in the matrix. Depletion was maximum (98%) in the main pocket (nigrosome 1), located in the caudal and mediolateral part of the substantia nigra pars compacta. Progressively less cell loss was detectable in more medial and more rostral nigrosomes, following the stereotyped order of nigrosome 1 > nigrosome 2 > nigrosome 4 > nigrosome 3 > nigrosome 5. A parallel, but lesser, caudorostral gradient of cell loss was observed for dopamine-containing neurons included in the matrix. This pattern of neuronal loss was consistent from one parkinsonian substantia nigra pars compacta to another. The spatiotemporal progression of neuronal loss related to disease duration can thus be drawn in the substantia nigra pars compacta for each Parkinson's disease patient: depletion begins in the main pocket (nigrosome 1) and then spreads to other nigrosomes and the matrix along rostral, medial and dorsal axes of progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                15 December 2014
                2014
                : 8
                : 152
                Affiliations
                [1]Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University New York, NY, USA
                Author notes

                Edited by: Javier Blesa, Columbia University, USA

                Reviewed by: Jose Obeso, Universidad de Navarra, Spain; Serge Przedborski, Columbia University, USA

                *Correspondence: Lars Brichta, Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, Box 296, New York, NY, 10065, USA e-mail: lbrichta@ 123456rockefeller.edu

                This article was submitted to the journal Frontiers in Neuroanatomy.

                Article
                10.3389/fnana.2014.00152
                4266033
                25565977
                944521f0-0bf2-4d44-999a-4574336930b8
                Copyright © 2014 Brichta and Greengard.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 October 2014
                : 24 November 2014
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 155, Pages: 16, Words: 16741
                Categories
                Neuroscience
                Review Article

                Neurosciences
                parkinson’s disease,substantia nigra,ventral tegmental area,dopamine,selective vulnerability,differential vulnerability

                Comments

                Comment on this article