45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perennial ryegrass ( Lolium perenne L.) produces high levels of fructans as a mixture of oligosaccharides and polysaccharides with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructans, fructan distribution between above ground biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety “Veyo” and ecotype “Falster” from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans, especially DP = 4, in both the top and the roots of “Veyo” and “Falster” in response to low-temperature stress. The accumulation of DP > 50 fructans was only apparent in the top tissues where the Lp1-FFT expression is higher compared to the roots in both “Veyo” and “Falster.” Our results also show the accumulation and depolymerization of fructans with different DP, together with the induction of genes encoding fructosyltransferases and fructan exohydrolases in both “Veyo” and “Falster” during cold acclimation, supporting the hypothesis that fructan synthesis and depolymerization occurring simultaneously. The ecotype “Falster,” adapted to cold climates, increased total fructan content and produced more DP > 7 fructans in the roots than the variety “Veyo,” adapted to warmer climates. This indicates that high-DP fructan accumulation in roots may be an adaptive trait for plant recovery after abiotic stresses.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Chlorophyll fluorescence--a practical guide.

          Chlorophyll fluorescence analysis has become one of the most powerful and widely used techniques available to plant physiologists and ecophysiologists. This review aims to provide an introduction for the novice into the methodology and applications of chlorophyll fluorescence. After a brief introduction into the theoretical background of the technique, the methodology and some of the technical pitfalls that can be encountered are explained. A selection of examples is then used to illustrate the types of information that fluorescence can provide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sugar signalling and antioxidant network connections in plant cells.

            Sugars play important roles as both nutrients and regulatory molecules throughout plant life. Sugar metabolism and signalling function in an intricate network with numerous hormones and reactive oxygen species (ROS) production, signalling and scavenging systems. Although hexokinase is well known to fulfil a crucial role in glucose sensing processes, a scenario is emerging in which the catalytic activity of mitochondria-associated hexokinase regulates glucose-6-phosphate and ROS levels, stimulating antioxidant defence mechanisms and the synthesis of phenolic compounds. As a new concept, it can be hypothesized that the synergistic interaction of sugars (or sugar-like compounds) and phenolic compounds forms part of an integrated redox system, quenching ROS and contributing to stress tolerance, especially in tissues or organelles with high soluble sugar concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Multifunctional fructans and raffinose family oligosaccharides

              Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                12 May 2015
                2015
                : 6
                : 329
                Affiliations
                [1] 1Department of Agroecology, Aarhus University Slagelse, Denmark
                [2] 2Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
                [3] 3Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry Akademija, Lithuania
                Author notes

                Edited by: Wim Van Den Ende, Katholieke Universiteit Leuven, Belgium

                Reviewed by: Mingxiang Liang, Nanjing Agricultural University, China; Jérémy Lothier, University of Angers, France

                *Correspondence: Birte Boelt, Department of Agroecology – Crop Health, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark birte.boelt@ 123456agro.au.dk

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.00329
                4428078
                26029229
                943651f2-9436-49d4-964b-12fb4807e931
                Copyright © 2015 Abeynayake, Etzerodt, Jonavičienė, Byrne, Asp and Boelt.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 February 2015
                : 27 April 2015
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 61, Pages: 13, Words: 8270
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                cold acclimation,degree of polymerization,fructan biosynthesis,fructan metabolism,gene,ryegrass

                Comments

                Comment on this article