7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Landscape of Spitzoid Neoplasms Impacting Patient Management

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spitzoid neoplasms are a distinct group of melanocytic proliferations characterized by epithelioid and/ or spindle shaped melanocytes. Intermediate forms that share features of both benign Spitz nevi (SN) and Spitz melanoma, i.e., malignant Spitz tumor (MST) represent a diagnostically and clinically challenging group of melanocytic lesions. A multitude of descriptive diagnostic terms exist for these ambiguous lesions with atypical Spitz tumor (AST) or Spitz tumor of uncertain malignant potential (STUMP) just naming two of them. This diagnostic gray zone creates confusion and high insecurity in clinicians and in patients. Biological behavior and clinical course of this intermediate group still remains largely unknown, often leading to difficulties with uncertainties in clinical management and prognosis. Consequently, a better stratification of Spitzoid neoplasms in benign and malignant forms is required thereby keeping the diagnostic group of AST/STUMP as small as possible. Ancillary diagnostic techniques such as immunohistochemistry, comparative genomic hybridization, fluorescence in situ hybridization, next generation sequencing, micro RNA and mRNA analysis as well as mass spectrometry imaging offer new opportunities for the distinct diagnosis, thereby allowing the best clinical management of Spitzoid neoplasms. This review gives an overview on these additional diagnostic techniques and the recent developments in the field of molecular genetic alterations in Spitzoid neoplasms. We also discuss how the recent findings might facilitate the diagnosis and stratification of atypical Spitzoid neoplasms and how these findings will impact the diagnostic work up as well as patient management. We suggest a stepwise implementation of ancillary diagnostic techniques thereby integrating immunohistochemistry and molecular pathology findings in the diagnosis of challenging ambiguous Spitzoid neoplasms. Finally, we will give an outlook on pending future research objectives in the field of Spitzoid melanocytic lesions.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA biogenesis: regulating the regulators.

          MicroRNAs (miRNAs) function as 21-24 nucleotide guide RNAs that use partial base-pairing to recognize target messenger RNAs and repress their expression. As a large fraction of protein-coding genes are under miRNA control, production of the appropriate level of specific miRNAs at the right time and in the right place is integral to most gene regulatory pathways. MiRNA biogenesis initiates with transcription, followed by multiple processing steps to produce the mature miRNA. Every step of miRNA production is subject to regulation and disruption of these control mechanisms has been linked to numerous human diseases, where the balance between the expression of miRNAs and their targets becomes distorted. Here we review the basic steps of miRNA biogenesis and describe the various factors that control miRNA transcription, processing, and stability in animal cells. The tremendous effort put into producing the appropriate type and level of specific miRNAs underscores the critical role of these small RNAs in gene regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classifying melanocytic tumors based on DNA copy number changes.

            Melanoma and benign melanocytic nevi can overlap significantly in their histopathological presentation and misdiagnoses are common. To determine whether genetic criteria can be of diagnostic help we determined DNA copy number changes in 186 melanocytic tumors (132 melanomas and 54 benign nevi) using comparative genomic hybridization. We found highly significant differences between melanomas and nevi. Whereas 127 (96.2%) of the melanomas had some form of chromosomal aberration, only 7 (13.0%) of the benign nevi cases had aberrations. All seven cases with aberrations were Spitz nevi, in six of which the aberration was an isolated gain involving the entire short arm of chromosome 11. This aberration was not observed in any of the 132 melanomas. We also analyzed the 132 melanomas for genetic differences depending on anatomical site, Clark's histogenetic type, and sun-exposure pattern. We show that melanomas on acral sites have significantly more aberrations involving chromosomes 5p, 11q, 12q, and 15, as well as focused gene amplifications. Melanomas classified as lentigo maligna melanomas or as occurring on severely sun-damaged skin showed markedly more frequent losses of chromosomes 17p and 13q. This study shows a pattern of chromosomal aberration in melanoma that is distinct from melanocytic nevi and should be further evaluated as a diagnostic test for melanocytic lesions that are now ambiguous. In addition, we show marked differences in the genetic make-up of melanomas that depend on anatomical location and sun-exposure pattern indicating that potential therapeutic targets might vary among melanoma types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations.

              Most melanocytic nevi develop on sun-exposed skin during childhood and adolescence and commonly harbor BRAF mutations or, less frequently, NRAS mutations. A small subset of nevi is present at birth, and therefore must develop independently of UV light. To assess whether these nevi have a different mutation spectrum than those that develop on sun-exposed skin, we determined the BRAF and NRAS mutation frequencies in 32 truly congenital nevi. We found no BRAF mutations, but 81% (26/32) harbored mutations in NRAS. Consistently, seven of 10 (70%) proliferating nodules that developed early in life in congenital nevi showed mutations in NRAS. A separate set of nevi that displayed histological features frequently found in nevi present at birth ("congenital pattern nevi") but lacked a definitive history of presence at birth showed an inverse mutation pattern with common BRAF mutations (20/28 or 71%) and less frequent NRAS mutations (7/28 or 25%). Thus, nevi that develop in utero are genetically distinct from those that develop later, and histopathologic criteria alone are unable to reliably distinguish the two groups. The results are consistent with the finding in melanoma that BRAF mutations are uncommon in neoplasms that develop in the absence of sun-exposure.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                13 December 2018
                2018
                : 5
                : 344
                Affiliations
                [1] 1Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center , Maastricht, Netherlands
                [2] 2Laboratory for Translational Cell and Tissue Research, Department of Pathology, KU Leuven , Leuven, Belgium
                [3] 3Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University , Maastricht, Netherlands
                [4] 4Institute for Translational Skin Cancer Research, German Cancer Consortium (DKTK), Partner Site Essen, University Hospital Essen , Essen, Germany
                Author notes

                Edited by: H. Peter Soyer, The University of Queensland, Australia

                Reviewed by: Gerardo Ferrara, Ospedale Generale Provinciale Macerata, Italy; Mitchell Stark, The University of Queensland, Australia

                *Correspondence: Lisa M. Hillen lisa.hillen@ 123456mumc.nl
                Véronique Winnepenninckx v.winnepenninckx@ 123456mumc.nl

                This article was submitted to Dermatology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2018.00344
                6300473
                941a3225-b610-4b8a-a846-f9c4fe849bf6
                Copyright © 2018 Hillen, Van den Oord, Geybels, Becker, zur Hausen and Winnepenninckx.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 September 2018
                : 23 November 2018
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 121, Pages: 17, Words: 12510
                Funding
                Funded by: Maastricht Universitair Medisch Centrum 10.13039/501100004528
                Categories
                Medicine
                Review

                spitzoid neoplasms,spitz nevi,malignant spitz tumor,atypical spitz tumor,spitz melanoma,molecular,genetic,patient management

                Comments

                Comment on this article