11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeted and responsive biomaterials in osteoarthritis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoarthritis (OA) is a degenerative disease characterized by loss of articular cartilage and chronic inflammation, involving multiple cellular dysfunctions and tissue lesions. The non-vascular environment and dense cartilage matrix in the joints tend to block drug penetration, resulting in low drug bioavailability. There is a desire to develop safer and more effective OA therapies to meet the challenges of an aging world population in the future. Biomaterials have achieved satisfactory results in improving drug targeting, prolonging the duration of action, and achieving precision therapy. This article reviews the current basic understanding of the pathological mechanisms and clinical treatment dilemmas of OA, summarizes and discusses the advances for different kinds of targeted and responsive biomaterials in OA, seeking to provide new perspectives for the treatment of OA. Subsequently, limitations and challenges in clinical translation and biosafety are analyzed to guide the development of future therapeutic strategies for OA. As the need for precision medicine rises over time, emerging multifunctional biomaterials based on tissue targeting and controlled release will become an irreplaceable part of OA management.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.

          Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis

            Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1 β , TNF α , IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.

              Osteoarthritis (OA) is associated with cartilage destruction, subchondral bone remodeling and inflammation of the synovial membrane, although the etiology and pathogenesis underlying this debilitating disease are poorly understood. Secreted inflammatory molecules, such as proinflammatory cytokines, are among the critical mediators of the disturbed processes implicated in OA pathophysiology. Interleukin (IL)-1β and tumor necrosis factor (TNF), in particular, control the degeneration of articular cartilage matrix, which makes them prime targets for therapeutic strategies. Animal studies provide support for this approach, although only a few clinical studies have investigated the efficacy of blocking these proinflammatory cytokines in the treatment of OA. Apart from IL-1β and TNF, several other cytokines including IL-6, IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor and IL-8 (a chemokine) have also been shown to be implicated in OA and could possibly be targeted therapeutically. This Review discusses the current knowledge regarding the role of proinflammatory cytokines in the pathophysiology of OA and addresses the potential of anticytokine therapy in the treatment of this disease.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2023
                16 January 2023
                : 13
                : 3
                : 931-954
                Affiliations
                [1 ]Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
                [2 ]Organoid Research Center, Shanghai University, Shanghai, 200444, China.
                [3 ]School of Medicine, Shanghai University, Shanghai 200444, China.
                [4 ]School of Life Sciences, Shanghai University, Shanghai 200444, China.
                Author notes
                ✉ Corresponding authors: Yan Hu, E-mail: xjhuyan@ 123456shu.edu.cn ; Zhen Geng, E-mail: nanboshan1987@ 123456163.com ; Jiacan Su, E-mail: drsujiacan@ 123456163.com .

                *These authors contributed equally to this study.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov13p0931
                10.7150/thno.78639
                9925319
                36793867
                9402e820-3478-4557-9230-382e7d272907
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 4 September 2022
                : 7 November 2022
                Categories
                Review

                Molecular medicine
                osteoarthritis,articular cartilage,targeted biomaterial,responsive biomaterial,drug delivery

                Comments

                Comment on this article