10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Perfect Storm: COVID-19 Health Disparities in US Blacks

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID-19) accounts for over 180,000 deaths in the USA. Although COVID-19 affects all racial ethnicities, non-Hispanic Blacks have the highest mortality rates. Evidence continues to emerge, linking the disproportion of contagion and mortality from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a result of adverse social determinants of health. Yet, genetic predisposition may also play a credible role in disease transmission. SARS-CoV-2 enters cells by interaction between SARS-CoV-2 spike protein and the receptor molecule angiotensin converting enzyme 2 (ACE2) expressed on the surface of the target cells, such that polymorphisms and the expression level of ACE2 influence infectivity and consequent pathogenesis of SARS-CoV-2. Genetic polymorphisms in other multiple genes, such as acetylcholinesterase (AChE) and interleukin-6, are also closely associated with underlying diseases, such as hypertension and type 2 diabetes mellitus, which substantially raise SARS-CoV-2 mortality. However, it is unknown how these genetic polymorphisms contribute to the disparate mortality rates, with or without underlying diseases. Of particular interest is the potential that genetic polymorphisms in these genes may be influencing the disparity of COVID-19 mortality rates in Black communities. Here, we review the evidence that biological predisposition for high-risk comorbid conditions may be relevant to our ability to fully understand and therefore address health disparities of COVID-19 deaths in Blacks.

          Electronic supplementary material

          The online version of this article (10.1007/s40615-020-00871-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

            Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

              Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
                Bookmark

                Author and article information

                Contributors
                Harlan.Jones@unthsc.edu
                Journal
                J Racial Ethn Health Disparities
                J Racial Ethn Health Disparities
                Journal of Racial and Ethnic Health Disparities
                Springer International Publishing (Cham )
                2197-3792
                2196-8837
                23 September 2020
                : 1-8
                Affiliations
                [1 ]GRID grid.266871.c, ISNI 0000 0000 9765 6057, Department of Microbiology, Immunology and Genetics, , University of North Texas Health Science Center, ; 3500 Camp Bowie Boulevard, Fort Worth, TX 76107 USA
                [2 ]GRID grid.266871.c, ISNI 0000 0000 9765 6057, Texas Center for Health Disparities, , University of North Texas Health Science Center, ; Fort Worth, TX 76107 USA
                [3 ]GRID grid.264766.7, ISNI 0000 0001 2289 1930, Harris College of Nursing & Health Sciences, , Texas Christian University, ; TCU Box 298620, Fort Worth, TX 76129 USA
                Article
                871
                10.1007/s40615-020-00871-y
                7510013
                32965660
                93a688e8-ff42-4981-b81f-314a8a20d6f6
                © W. Montague Cobb-NMA Health Institute 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 3 July 2020
                : 31 August 2020
                : 13 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100006545, National Institute on Minority Health and Health Disparities;
                Award ID: 3U54MD006882
                Award ID: U54MD006882-08S2
                Award Recipient :
                Categories
                Article

                covid-19,genetics,polymorphisms,stress,comorbidity,health disparities,african americans,blacks,ace2,ache,il-6

                Comments

                Comment on this article