2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A simple and rapid protocol for the genetic transformation of Ensete ventricosum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enset ( Ensete ventricosum), also known as Ethiopian banana, is a food security crop for more than 20 million people in Ethiopia. As conventional breeding of enset is very challenging, genetic engineering is an alternative option to introduce important traits such as enhanced disease resistance and nutritional value. Genetic transformation and subsequent regeneration of transgenic enset has never been reported mainly due to challenges in developing transformation protocols for this tropical species. Agrobacterium-mediated transformation could be a practical tool for the genetic improvement of enset. However, the efficiency of the transformation system depends on several parameters such as plant regeneration, genotype, explant, selection agent and Agrobacterium strains. As a first step towards the development of transgenic enset, a simple and rapid plant regeneration system was developed using multiple buds as explants. Induction and proliferation of multiple buds from shoot tip explants was achieved on Murashige and Skoog (MS) medium supplemented with 5 and 10 mg/l of 6-benzylaminopurine (BAP), respectively. Shoots were regenerated from multiple buds on MS media containing 2 mg/l BAP and 0.2% activated charcoal. Based on the optimized regeneration protocol, an Agrobacterium-mediated transformation method was developed using multiple buds as explants and the binary plasmid pCAMBIA2300-GFP containing the green florescent protein (gfp) reporter gene and neomycin phosphotransferase II ( nptII) selection marker gene. Transgenic plantlets were obtained within 4 months at a frequency of about 1.25%. The transgenic lines were validated by PCR analysis using primers specific to the nptII gene. To obtain uniformly transformed plantlets, chimerism was diluted by subculturing and regenerating the transgenic shoots on a selective medium containing kanamycin (150 mg/l) for five cycles. The uniformity of the transgenic plants was confirmed by Southern blot hybridization and RT-PCR analyses on different tissues such as leaf, pseudostem and root of same transgenic plant. In the present study, we report a simple Agrobacterium-mediated transformation system for generating transgenic events of enset. To the best of our knowledge, this is the first report on the stable transformation and regeneration of transgenic events of enset. The transformation system established in this study can be used for the generation of transgenic enset with important traits such as disease resistance.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.

          We used a binary-vector strategy to study the hypervirulence of Agrobacterium tumefaciens A281, an L,L-succinamopine strain. Strain A281 is hypervirulent on several solanaceous plants. We constructed plasmids (pCS65 and pCS277) carrying either the transferred DNA (T-DNA) or the remainder of the tumor-inducing (Ti) plasmid (pEHA101) from this strain and tested each of these constructs in trans with complementary regions from heterologous Ti plasmids. Hypervirulence on tobacco could be reconstructed in a bipartite strain with the L,L-succinamopine T-DNA and the vir region on separate plasmids. pEHA101 was able to complement octopine T-DNA to hypervirulence on tobacco and tomato plants. Nopaline T-DNA was complemented better on tomato plants by pEHA101 than it was by its own nopaline vir region, but not to hypervirulence. L,L-Succinamopine T-DNA could not be complemented to hypervirulence on tobacco and tomato plants with either heterologous vir region. From these results we suggest that the hypervirulence of strain A281 is due to non-T-DNA sequences on the Ti plasmid.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enset in Ethiopia: a poorly characterized but resilient starch staple

            Enset ( Ensete ventricosum , Musaceae) is an African crop that currently provides the staple food for approx. 20 million Ethiopians. Whilst wild enset grows over much of East and Southern Africa and the genus extends across Asia to China, it has only ever been domesticated in the Ethiopian Highlands. Here, smallholder farmers cultivate hundreds of landraces across diverse climatic and agroecological systems. Enset has several important food security traits. It grows over a relatively wide range of conditions, is somewhat drought-tolerant, and can be harvested at any time of the year, over several years. It provides an important dietary starch source, as well as fibres, medicines, animal fodder, roofing and packaging. It stabilizes soils and microclimates and has significant cultural importance. In contrast to the other cultivated species in the family Musaceae (banana), enset has received relatively little research attention. Here, we review and critically evaluate existing research, outline available genomic and germplasm resources, aspects of pathology, and explore avenues for crop development. Enset is an underexploited starch crop with significant potential in Ethiopia and beyond. Research is lacking in several key areas: empirical studies on the efficacy of current agronomic practices, the genetic diversity of landraces, approaches to systematic breeding, characterization of existing and emerging diseases, adaptability to new ranges and land-use change, the projected impact of climate change, conservation of crop wild relatives, by-products or co-products or non-starch uses, and the enset microbiome. We also highlight the limited availability of enset germplasm in living collections and seedbanks, and the lack of knowledge of reproductive and germination biology needed to underpin future breeding. By reviewing the current state of the art in enset research and identifying gaps and opportunities, we hope to catalyse the development and sustainable exploitation of this neglected starch crop.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Generation of Transgenic Banana (Musa acuminata) Plants via Agrobacterium-Mediated Transformation

                Bookmark

                Author and article information

                Contributors
                L.Tripathi@cgiar.org
                Journal
                Plant Methods
                Plant Methods
                Plant Methods
                BioMed Central (London )
                1746-4811
                8 November 2019
                8 November 2019
                2019
                : 15
                : 130
                Affiliations
                [1 ]International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
                [2 ]ISNI 0000 0001 2195 6683, GRID grid.463251.7, Ethiopian Institute of Agricultural Research (EIAR), ; Addis Ababa, Ethiopia
                Author information
                http://orcid.org/0000-0001-5723-4981
                Article
                512
                10.1186/s13007-019-0512-y
                6839154
                31719836
                93a43fbd-0c79-4e30-a108-bc28c041ae04
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 August 2019
                : 28 October 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: OPP1079038
                Award Recipient :
                Categories
                Methodology
                Custom metadata
                © The Author(s) 2019

                Plant science & Botany
                ensete ventricosum,bedadeti,agrobacterium-mediated transformation,meristem,multiple buds,gfp gene

                Comments

                Comment on this article