3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic exploration of Sesuvium sesuvioides: comparative study and phylogenetic analysis within the order Caryophyllales from Cholistan desert, Pakistan

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Aizoaceae family’s Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides.

          Results

          The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales’ 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ.

          Conclusion

          The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family’s monophyletic origin. This study’s highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12870-023-04670-5.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates

          Model-based molecular phylogenetics plays an important role in comparisons of genomic data, and model selection is a key step in all such analyses. We present ModelFinder, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates. The improvement is achieved by incorporating a model of rate-heterogeneity across sites not previously considered in this context, and by allowing concurrent searches of model-space and tree-space.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

            Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

              We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
                Bookmark

                Author and article information

                Contributors
                musarrat.ramzan@iub.edu.pk
                sd96850@gmail.com
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                20 December 2023
                20 December 2023
                2023
                : 23
                : 658
                Affiliations
                [1 ]Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University Bahawalpur, ( https://ror.org/002rc4w13) Bahawalpur, Punjab Pakistan
                [2 ]Government Associate College for Women Ahmedpur East, Bahawalpur, Punjab Pakistan
                [3 ]Department of Agriculture, Government College University Lahore, ( https://ror.org/040gec961) Lahore, Punjab Pakistan
                [4 ]North Florida Research and Education Center, University of Florida, ( https://ror.org/02y3ad647) 155 Research Road, Quincy, Florida USA
                [5 ]Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, ( https://ror.org/05x817c41) Multan, Punjab Pakistan
                [6 ]Department of Botany and Microbiology, College of Science, King Saud University, ( https://ror.org/02f81g417) P. O. Box.2455, Riyadh, 11451 Saudi Arabia
                Article
                4670
                10.1186/s12870-023-04670-5
                10731703
                38124056
                939ed1d3-9ef0-49b9-863d-65289aa63850
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 July 2023
                : 7 December 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Plant science & Botany
                aizoaceae,caryophyllales,sesuvium sesuvioides,sesuvium portulacastrum,tetragonia tetragonoides

                Comments

                Comment on this article