432
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Approaching a state shift in Earth's biosphere.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale 'tipping point' highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Novel climates, no-analog communities, and ecological surprises

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A framework for community interactions under climate change.

            Predicting the impacts of climate change on species is one of the biggest challenges that ecologists face. Predictions routinely focus on the direct effects of climate change on individual species, yet interactions between species can strongly influence how climate change affects organisms at every scale by altering their individual fitness, geographic ranges and the structure and dynamics of their community. Failure to incorporate these interactions limits the ability to predict responses of species to climate change. We propose a framework based on ideas from global-change biology, community ecology, and invasion biology that uses community modules to assess how species interactions shape responses to climate change. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems.

              Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earth's terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                1476-4687
                0028-0836
                Jun 06 2012
                : 486
                : 7401
                Affiliations
                [1 ] Department of Integrative Biology, University of California, Berkeley, California 94720, USA. barnosky@berkeley.edu
                Article
                nature11018
                10.1038/nature11018
                22678279
                9397406f-5915-4d58-bc21-92a0384d78dc
                History

                Comments

                Comment on this article