4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VEXAS Syndrome: A Novelty in MDS Landscape

      ,
      Diagnostics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fever, inflammation and vacuoles in hematopoietic cells represent the main features associated with VEXAS syndrome, a new prototype of autoinflammatory disorders genetically characterized by somatic mutation of the UBA1 gene which encodes the enzyme1-activating enzyme (E1) required for ubiquitin signaling. Described very recently, patients with VEXAS syndrome present a systemic autoinflammatory syndrome associated with hematological impairments, especially cytopenias whose pathophysiology is mainly non-elucidated. Initially diagnosed in elderly male patients, VEXAS syndrome was frequently associated with a diagnosis of myelodysplastic syndromes (MDS) leading the medical community to first consider VEXAS syndrome as a new subtype of MDS. However, since the first description of VEXAS patients in 2021, it appears from the multitude of case reports that MDS associated with VEXAS are different from the classically described MDS.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

          The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Revised international prognostic scoring system for myelodysplastic syndromes.

            The International Prognostic Scoring System (IPSS) is an important standard for assessing prognosis of primary untreated adult patients with myelodysplastic syndromes (MDS). To refine the IPSS, MDS patient databases from international institutions were coalesced to assemble a much larger combined database (Revised-IPSS [IPSS-R], n = 7012, IPSS, n = 816) for analysis. Multiple statistically weighted clinical features were used to generate a prognostic categorization model. Bone marrow cytogenetics, marrow blast percentage, and cytopenias remained the basis of the new system. Novel components of the current analysis included: 5 rather than 3 cytogenetic prognostic subgroups with specific and new classifications of a number of less common cytogenetic subsets, splitting the low marrow blast percentage value, and depth of cytopenias. This model defined 5 rather than the 4 major prognostic categories that are present in the IPSS. Patient age, performance status, serum ferritin, and lactate dehydrogenase were significant additive features for survival but not for acute myeloid leukemia transformation. This system comprehensively integrated the numerous known clinical features into a method analyzing MDS patient prognosis more precisely than the initial IPSS. As such, this IPSS-R should prove beneficial for predicting the clinical outcomes of untreated MDS patients and aiding design and analysis of clinical trials in this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Landscape of genetic lesions in 944 patients with myelodysplastic syndromes

              High-throughput DNA sequencing significantly contributed to diagnosis and prognostication in patients with myelodysplastic syndromes (MDS). We determined the biological and prognostic significance of genetic aberrations in MDS. In total, 944 patients with various MDS subtypes were screened for known/putative mutations/deletions in 104 genes using targeted deep sequencing and array-based genomic hybridization. In total, 845/944 patients (89.5%) harbored at least one mutation (median, 3 per patient; range, 0–12). Forty-seven genes were significantly mutated with TET2, SF3B1, ASXL1, SRSF2, DNMT3A, and RUNX1 mutated in >10% of cases. Many mutations were associated with higher risk groups and/or blast elevation. Survival was investigated in 875 patients. By univariate analysis, 25/48 genes (resulting from 47 genes tested significantly plus PRPF8) affected survival (P<0.05). The status of 14 genes combined with conventional factors revealed a novel prognostic model (‘Model-1') separating patients into four risk groups (‘low', ‘intermediate', ‘high', ‘very high risk') with 3-year survival of 95.2, 69.3, 32.8, and 5.3% (P<0.001). Subsequently, a ‘gene-only model' (‘Model-2') was constructed based on 14 genes also yielding four significant risk groups (P<0.001). Both models were reproducible in the validation cohort (n=175 patients; P<0.001 each). Thus, large-scale genetic and molecular profiling of multiple target genes is invaluable for subclassification and prognostication in MDS patients.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                DIAGC9
                Diagnostics
                Diagnostics
                MDPI AG
                2075-4418
                July 2022
                June 29 2022
                : 12
                : 7
                : 1590
                Article
                10.3390/diagnostics12071590
                35885496
                9391a1a7-8a7e-4f84-a98c-7abd9f50c2b4
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article